Abstract
This study introduces a highly preorganized self-immolative spacer
that is coupled to a nonfluorescent leaving group. The water-soluble
compound can rapidly liberate a water-insoluble fluorescent precipitate
by intramolecular attack of a free amine on a phenolic ester group
via a six-membered transition state. One of the crucial steps in
the synthesis of this molecule was a sterically very unfavored nucleophilic
substitution to create a tertiary ether; this was optimized using
model compounds. Another key challenge was deprotection by catalytic
hydrogenation at low temperatures in order to furnish the hydroacetate
of the free amine without further fragmentation. LC-MS and fluorescence
studies showed that this compound collapsed instantaneously in methanol,
as well as within a wide pH range in buffered aqueous media.
Key words
self-immolative spacer - preorganization - tertiary
ether formation - low temperature hydrogenation - fluorescence
References
1 Permanent address: State Key Laboratory
of Chemo/Biosensing and Chemometrics, College of Chemistry & Chemical
Engineering, Hunan University, Changsha 410082, P.R. of China.
2
Kratz F.
Müller IA.
Ryppa C.
Warnecke A.
ChemMedChem
2008,
3:
20
3
Enzyme
Assays: High-throughput Screening, Genetic Selection and Fingerprinting
Reymond J.-L.
Wiley-VCH;
Weinheim:
2006.
4a
Naleway JJ.
Fox CMJ.
Robinhold D.
Terpetschnig E.
Olson NA.
Haugland RP.
Tetrahedron Lett.
1994,
35:
8569
4b
Diwu Z.
Lu Y.
Upson RH.
Zhou M.
Klaubert DH.
Haugland RP.
Tetrahedron
1997,
53:
7159
5a
Zhang XB.
Cheng G.
Zhang WJ.
Shen GL.
Yu RQ.
Talanta
2007,
71:
171
5b
Williams DL.
Heller A.
J. Phys.
Chem.
1970,
74:
4473
6
Zamet JJ.
Haddadin MJ.
Issidorides CH.
J. Chem. Soc., Perkin Trans. 1
1974,
1687
7a
Perrone MG.
Santandrea E.
Dell’Uomo N.
Giannessi F.
Milazzo FM.
Sciarroni AF.
Scilimati A.
Tortorella V.
Eur. J. Med. Chem.
2005,
40:
143
7b
Creger PL.
J. Org. Chem.
1972,
37:
1907
8a
Ferorelli S.
Loiodice F.
Tortorella V.
Conte-Camerino D.
De Luca AM.
Farmaco
2001,
56:
239
8b
Davis RD.
Fitzgerald RN.
Guo J.
Synthesis
2004,
1959
9
Ilas J.
Anderluh PS.
Dolenc MS.
Kikelj D.
Tetrahedron
2005,
61:
7325
10
Hutchinson JH.
Riendeau D.
Brideau C.
Chan C.
Falgueyret JP.
Guay J.
Jones TR.
Lepine C.
Macdonald D.
McFarlane CS.
Piechuta H.
Scheigetz J.
Tagari P.
Therien M.
Girard Y.
J.
Med. Chem.
1994,
37:
1153
11
Dei S.
Bellucci C.
Buccioni M.
Ferraroni M.
Gualtieri F.
Guandalini L.
Manetti D.
Matucci R.
Romanelli MN.
Scapecchi S.
Teodori E.
Bioorg.
Med. Chem.
2003,
11:
3153
12a
Beak P.
Berger KR.
J.
Am. Chem. Soc.
1980,
102:
3848
12b
Guandalini L.
Norcini M.
Varani K.
Pistolozzi M.
Gotti C.
Bazzicalupi C.
Martini E.
Dei S.
Manetti D.
Scapecchi S.
Teodori E.
Bertucci C.
Ghelardini C.
Romanelli MN.
J. Med. Chem.
2007,
50:
4993
13
Corey EJ.
Szekely I.
Shiner CS.
Tetrahedron
Lett.
1977,
18:
3529
14a
Ponpipom MM.
Hagmann WK.
Tetrahedron
1999,
55:
6749
14b
Li W.
Hanau CE.
d’Avignon A.
Moeller KD.
J.
Org. Chem.
1995,
60:
8155
15
Searles S.
Roelofs GE.
Tamres M.
McDonald RN.
J. Org.
Chem.
1965,
30:
3443
16
Gottlieb HE.
Kotlyar V.
Nudelman A.
J.
Org. Chem.
1997,
62:
7512