Subscribe to RSS
DOI: 10.1055/a-2525-4419
N-Acetylcystein (NAC) bei Retinitis pigmentosa
N-Acetylcysteine (NAC) for Retinitis pigmentosa
Zusammenfassung
Retinitis pigmentosa (RP) ist eine genetisch bedingte degenerative Netzhauterkrankung, die zum fortschreitenden Untergang der Photorezeptoren und letztlich zur Erblindung führen kann. Oxidativer Stress spielt eine zentrale Rolle in der Pathogenese der RP. In der vorliegenden narrativen Übersichtsarbeit wird die Wirkung von N-Acetylcystein (NAC), einem Antioxidans und Glutathionvorläufer, auf den Krankheitsverlauf bei RP-Patienten zusammengefasst. Das NAC kann oxidativen Stress in der Netzhaut reduzieren und zeigt in präklinischen Modellen potenziell neuroprotektive Effekte. Erste klinische Studien deuten auf eine Verbesserung der Sehschärfe und makulären Funktion unter NAC-Therapie hin. Die derzeit laufende multizentrische Phase-III-Studie „NAC Attack“ zielt darauf ab, die langfristige Wirksamkeit und Sicherheit von NAC bei RP zu überprüfen.
Abstract
Retinitis pigmentosa (RP) is a genetically mediated degenerative retinal disease that leads to progressive photoreceptor degeneration and, ultimately, blindness. Oxidative stress plays a central role in the pathogenesis of RP. This study examines the effect of N-acetylcysteine (NAC), an antioxidant and glutathione precursor, on the disease progression in RP patients. NAC can reduce oxidative stress in the retina and has shown potential neuroprotective effects in preclinical models. Initial clinical studies indicate improvements in visual acuity and macular function with NAC therapy, though no structural changes have yet been demonstrated. The ongoing multicentre Phase III trial “NAC Attack” aims to evaluate the long-term efficacy and safety of NAC in RP.
Schlüsselwörter
Retina - Retinitis pigmentosa - Netzhautdegeneration - Antioxidanzien - genetisch bedingte NetzhauterkrankungenKeywords
retina - retinitis pigmentosa - retinal degeneration - antioxidants - inherited retinal diseasesPublication History
Received: 09 November 2024
Accepted: 25 January 2025
Accepted Manuscript online:
26 January 2025
Article published online:
24 March 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Campochiaro PA, Strauss RW, Lu L. et al. Is There Excess Oxidative Stress and Damage in Eyes of Patients with Retinitis Pigmentosa?. Antioxid Redox Signal 2015; 23: 643-648
- 2 RetNet. Summaries of Genes and Loci Causing Retinal Diseases. https://retnet.org/summaries%23a-genes Stand: 06.10.2024
- 3 Verbakel SK, van Huet RAC, Boon CJF. et al. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66: 157-186
- 4 Dryja TP, Hahn LB, Cowley GS. et al. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci U S A 1991; 88: 9370
- 5 McGee TL, Seyedahmadi BJ, Sweeney MO. et al. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa. J Med Genet 2010; 47: 499-506
- 6 Vervoort R, Lennon A, Bird AC. et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 2000; 25: 462-466
- 7 Carver KA, Yang D. N-Acetylcysteine Amide Protects Against Oxidative Stress–Induced Microparticle Release From Human Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2016; 57: 360
- 8 Yu DY, Cringle SJ, Su EN. et al. Intraretinal oxygen levels before and after photoreceptor loss in the RCS rat. Invest Ophthalmol Vis Sci 2000; 41: 3999-4006
- 9 Yu DY, Cringle SJ. Retinal degeneration and local oxygen metabolism. Exp Eye Res 2005; 80: 745-751
- 10 Usui S, Oveson BC, Lee SY. et al. NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa. J Neurochem 2009; 110: 1028-1037
- 11 Wang Z, Zhao H, Guan W. et al. Metabolic memory in mitochondrial oxidative damage triggers diabetic retinopathy. BMC Ophthalmol 2018; 18: 258
- 12 Shen J, Yang X, Dong A. et al. Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. J Cell Physiol 2005; 203: 457-464
- 13 Zafarullah M, Li WQ, Sylvester J. et al. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 2003; 60: 6-20
- 14 Cotgreave IA. N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol 1997; 38: 205-227
- 15 Chiew AL, Gluud C, Brok J. et al. Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst Rev 2018; (02) CD003328
- 16 Atlas D. Emerging therapeutic opportunities of novel thiol-amides, NAC-amide (AD4/NACA) and thioredoxin mimetics (TXM-Peptides) for neurodegenerative-related disorders. Free Radic Biol Med 2021; 176: 120-141
- 17 Carver KA, Yang D. N-Acetylcysteine Amide Protects Against Oxidative Stress–Induced Microparticle Release From Human Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2016; 57: 360
- 18 Völcker HE, Dithmar S, Schütt F. [N-acetylcysteine improves lysosomal function and enhances the degradation of photoreceptor outer segments in cultured RPE cells]. Klin Monbl Augenheilkd 2007; 224: 580-584
- 19 Usui S, Oveson BC, Iwase T. et al. Overexpression of SOD in retina: need for increase in H2O2-detoxifying enzyme in same cellular compartment. Free Radic Biol Med 2011; 51: 1347-1354
- 20 Xiong W, MacColl Garfinkel AE, Li Y. et al. NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage. J Clin Invest 2015; 125: 1433-1445
- 21 Lee SY, Usui S, Zafar AB. et al. N-Acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa. J Cell Physiol 2011; 226: 1843-1849
- 22 Campochiaro PA, Iftikhar M, Hafiz G. et al. Oral N-acetylcysteine improves cone function in retinitis pigmentosa patients in phase I trial. J Clin Invest 2020; 130: 1527-1541
- 23 Biotechnology Innovation Organization (BIO), Informa Pharma Intelligence, QLS Advisors. Clinical Development Success Rates and Contributing Factors 2011–2020 Report. https://www.bio.org/clinical-development-success-rates-and-contributing-factors-2011-2020 Stand: 06.10.2024
- 24 Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics 2018; 20: 273
- 25 Comander J, Weigel DiFranco C, Sanderson K. et al. Natural history of retinitis pigmentosa based on genotype, vitamin A/E supplementation, and an electroretinogram biomarker. JCI Insight 2023; 8: e167546
- 26 Berson EL, Rosner B, Sandberg MA. et al. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 1993; 111: 761-772