Semin Liver Dis
DOI: 10.1055/a-2464-9543
Review Article

Advancements in MELD Score and Its Impact on Hepatology

David Hudson
1   Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, Ontario, Canada
,
2   Obesity and Digestive Diseases Unit, Medica Sur Hospital, Mexico City, Mexico
,
3   Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
,
Gurpreet Malhi
1   Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, Ontario, Canada
,
Angelica Rivas
4   Department of Medicine, University of Calgary, Calgary, Alberta, Canada
,
Tamoor Afzaal
1   Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, Ontario, Canada
,
Mahsa Rahmany Rad
1   Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, Ontario, Canada
,
5   Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
6   Division of Gastroenterology and Hepatology, MASLD Research Center, University of California San Diego, San Diego, California
,
Mohammad Qasim Khan
1   Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University and London Health Sciences Centre, London, Ontario, Canada
7   Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
,
5   Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
8   Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
› Author Affiliations
Funding No funding sources.

Abstract

There continues to be an ongoing need for fair and equitable organ allocation. The Model for End-Stage Liver Disease (MELD) score has evolved as a calculated framework to evaluate and allocate patients for liver transplantation objectively. The original MELD score has undergone multiple modifications as it is continuously scrutinized for its accuracy in objectively representing the clinical context of patients with liver disease. Several refinements and iterations of the score have been developed, including the widely accepted MELD-Na score. In addition, the most recent updated iteration, MELD 3.0, has been created. The MELD 3.0 calculator incorporates new variables such as patient sex and serum albumin levels and assigns new weights for serum sodium, bilirubin, international normalized ratio, and creatinine levels. It is anticipated that the use of MELD 3.0 scores will reduce overall waitlist mortality and enhance access for female liver transplant candidates. However, despite the emergence of the MELD score as one of the most objective measures for fair organ allocation, various countries and healthcare systems employ alternative methods for stratification and organ allocation. This review article will highlight the origins of the MELD score, its iterations, the current MELD 3.0, and future directions for managing liver transplantation organ allocation.

Lay Summary

Organ donation is crucial for the management of patients unwell with liver disease, but organs must be allocated fairly and equitably. One method used for this is the Model for End-Stage Liver Disease (MELD) score, which helps objectively decide which patient is a candidate for liver transplant. Over time, the MELD score has been refined to better reflect patients' needs. For example, the latest version, MELD 3.0, now considers factors like nutrition and gender. This should ensure that more patients, especially females, are candidates and receive appropriate access to liver transplantation. However, not every country uses the MELD score. Some countries have created their own scoring systems based on local research. This review will explain where the MELD score came from, how it has changed, the current characteristics of the MELD 3.0 score, and what the future might hold for organ allocation in liver transplants.

Authors' Contribution

Authors confirm their contribution to the article as follows:


D.H.: investigation, writing—original draft, writing—review and editing. G.M., A.R., T.A., F.J.V.C., I.H.D.d.L., M.R.R.: writing—original draft, writing—review and editing. L.A.D., M.Q.K.: writing—review, editing, and supervision. J.P.A.: conceptualization, writing—review, editing, and supervision.




Publication History

Accepted Manuscript online:
08 November 2024

Article published online:
11 December 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Trivedi HD. The evolution of the MELD score and its implications in liver transplant allocation: a beginner's guide for trainees. ACG Case Rep J 2022; 9 (05) e00763
  • 2 Polyak A, Kuo A, Sundaram V. Evolution of liver transplant organ allocation policy: current limitations and future directions. World J Hepatol 2021; 13 (08) 830-839
  • 3 Kim WR, Mannalithara A, Heimbach JK. et al. MELD 3.0: the model for End-Stage Liver Disease updated for the modern era. Gastroenterology 2021; 161 (06) 1887-1895.e4
  • 4 Alqahtani SA, Larson AM. Adult liver transplantation in the USA. Curr Opin Gastroenterol 2011; 27 (03) 240-247
  • 5 National Institutes of Health Consensus Development Conference Statement: liver transplantation–June 20-23, 1983. Hepatology 1984; 4 (1, Suppl): 107S-110S
  • 6 Song ATW, Avelino-Silva VI, Pecora RAA, Pugliese V, D'Albuquerque LAC, Abdala E. Liver transplantation: fifty years of experience. World J Gastroenterol 2014; 20 (18) 5363-5374
  • 7 Wiesner R, Edwards E, Freeman R. et al; United Network for Organ Sharing Liver Disease Severity Score Committee. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003; 124 (01) 91-96
  • 8 Ruf A, Dirchwolf M, Freeman RB. From Child-Pugh to MELD score and beyond: Taking a walk down memory lane. Ann Hepatol 2022; 27 (01) 100535
  • 9 Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 2000; 31 (04) 864-871
  • 10 Befeler AS, Palmer DE, Hoffman M, Longo W, Solomon H, Di Bisceglie AM. The safety of intra-abdominal surgery in patients with cirrhosis: model for end-stage liver disease score is superior to Child-Turcotte-Pugh classification in predicting outcome. Arch Surg 2005; 140 (07) 650-654 , discussion 655
  • 11 Arab JP, Díaz LA, Baeza N. et al. Identification of optimal therapeutic window for steroid use in severe alcohol-associated hepatitis: a worldwide study. J Hepatol 2021; 75 (05) 1026-1033
  • 12 Morales-Arráez D, Ventura-Cots M, Altamirano J. et al. The MELD score is superior to the Maddrey Discriminant Function Score to predict short-term mortality in alcohol-associated hepatitis: a global study. Am J Gastroenterol 2022; 117 (02) 301-310
  • 13 Díaz LA, Fuentes-López E, Ayares G. et al. MELD 3.0 adequately predicts mortality and renal replacement therapy requirements in patients with alcohol-associated hepatitis. JHEP Rep Innov Hepatol 2023; 5 (08) 100727
  • 14 Singal AK, Kamath PS. Model for end-stage liver disease. J Clin Exp Hepatol 2013; 3 (01) 50-60
  • 15 Kamath PS, Wiesner RH, Malinchoc M. et al. A model to predict survival in patients with end-stage liver disease. Hepatology 2001; 33 (02) 464-470
  • 16 Kremers WK, van IJperen M, Kim WR. et al. MELD score as a predictor of pretransplant and posttransplant survival in OPTN/UNOS status 1 patients. Hepatology 2004; 39 (03) 764-769
  • 17 Bernardi M, Gitto S, Biselli M. The MELD score in patients awaiting liver transplant: strengths and weaknesses. J Hepatol 2011; 54 (06) 1297-1306
  • 18 Kamath PS, Kim WR. Advanced Liver Disease Study Group. The model for end-stage liver disease (MELD). Hepatology 2007; 45 (03) 797-805
  • 19 Terrault NA, Francoz C, Berenguer M, Charlton M, Heimbach J. Liver transplantation 2023: status report, current and future challenges. Clin Gastroenterol Hepatol 2023; 21 (08) 2150-2166
  • 20 Aguirre-Villarreal D, Servin-Rojas M, Sánchez-Cedillo A. et al. Liver transplantation in Latin America: reality and challenges. Lancet Reg Health Am 2023; 28: 100633
  • 21 Brandsaeter B, Broomé U, Isoniemi H. et al. Liver transplantation for primary sclerosing cholangitis in the Nordic countries: outcome after acceptance to the waiting list. Liver Transpl 2003; 9 (09) 961-969
  • 22 Botta F, Giannini E, Romagnoli P. et al. MELD scoring system is useful for predicting prognosis in patients with liver cirrhosis and is correlated with residual liver function: a European study. Gut 2003; 52 (01) 134-139
  • 23 Said A, Williams J, Holden J. et al. Model for end stage liver disease score predicts mortality across a broad spectrum of liver disease. J Hepatol 2004; 40 (06) 897-903
  • 24 Freeman RB, Wiesner RH, Edwards E, Harper A, Merion R, Wolfe R. United Network for Organ Sharing Organ Procurement and Transplantation Network Liver and Transplantation Committee. Results of the first year of the new liver allocation plan. Liver Transpl 2004; 10 (01) 7-15
  • 25 Luca A, Angermayr B, Bertolini G. et al. An integrated MELD model including serum sodium and age improves the prediction of early mortality in patients with cirrhosis. Liver Transpl 2007; 13 (08) 1174-1180
  • 26 Heuman DM, Mihas AA, Habib A. et al. MELD-XI: a rational approach to “sickest first” liver transplantation in cirrhotic patients requiring anticoagulant therapy. Liver Transpl 2007; 13 (01) 30-37
  • 27 Chen D, Lu M, Fu Z, Ding K, Liang P. The association between the MELD-XI score and heart failure in patients with acute myocardial infarction after coronary artery stenting-a retrospective study. J Thorac Dis 2023; 15 (05) 2721-2728
  • 28 Biegus J, Zymliński R, Sokolski M. et al. Impaired hepato-renal function defined by the MELD XI score as prognosticator in acute heart failure. Eur J Heart Fail 2016; 18 (12) 1518-1521
  • 29 Godfrey EL, Malik TH, Lai JC. et al. The decreasing predictive power of MELD in an era of changing etiology of liver disease. Am J Transplant 2019; 19 (12) 3299-3307
  • 30 Moini M, Hoseini-Asl MK, Taghavi SA. et al. Hyponatremia a valuable predictor of early mortality in patients with cirrhosis listed for liver transplantation. Clin Transplant 2011; 25 (04) 638-645
  • 31 John S, Thuluvath PJ. Hyponatremia in cirrhosis: pathophysiology and management. World J Gastroenterol 2015; 21 (11) 3197-3205
  • 32 Biggins SW, Rodriguez HJ, Bacchetti P, Bass NM, Roberts JP, Terrault NA. Serum sodium predicts mortality in patients listed for liver transplantation. Hepatology 2005; 41 (01) 32-39
  • 33 Londoño MC, Cárdenas A, Guevara M. et al. MELD score and serum sodium in the prediction of survival of patients with cirrhosis awaiting liver transplantation. Gut 2007; 56 (09) 1283-1290
  • 34 Lv XH, Liu HB, Wang Y, Wang BY, Song M, Sun MJ. Validation of model for end-stage liver disease score to serum sodium ratio index as a prognostic predictor in patients with cirrhosis. J Gastroenterol Hepatol 2009; 24 (09) 1547-1553
  • 35 Kim WR, Biggins SW, Kremers WK. et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med 2008; 359 (10) 1018-1026
  • 36 Nagai S, Chau LC, Schilke RE. et al. Effects of allocating livers for transplantation based on Model for End-stage Liver Disease-sodium scores on patient outcomes. Gastroenterology 2018; 155 (05) 1451-1462.e3
  • 37 Goldberg DS, Olthoff KM. Standardizing MELD exceptions: current challenges and future directions. Curr Transplant Rep 2014; 1 (04) 232-237
  • 38 Oloruntoba OO, Moylan CA. Gender-based disparities in access to and outcomes of liver transplantation. World J Hepatol 2015; 7 (03) 460-467
  • 39 Mazumder NR, Fontana RJ. MELD 3.0 in advanced chronic liver disease. Annu Rev Med 2024; 75: 233-245
  • 40 Yoo JJ, Chang JI, Moon JE, Sinn DH, Kim SG, Kim YS. Validation of MELD 3.0 scoring system in East Asian patients with cirrhosis awaiting liver transplantation. Liver Transpl 2023; 29 (10) 1029-1040
  • 41 Artru F, Trovato F, Morrison M, Bernal W, McPhail M. Liver transplantation for acute-on-chronic liver failure. Lancet Gastroenterol Hepatol 2024; 9 (06) 564-576
  • 42 Arroyo V, Moreau R, Jalan R. Acute-on-chronic liver failure. N Engl J Med 2020; 382 (22) 2137-2145
  • 43 Idalsoaga F, Díaz LA, Fuentes-López E. et al. Active alcohol consumption is associated with acute-on-chronic liver failure in Hispanic patients. Gastroenterol Hepatol 2024; 47 (06) 562-573
  • 44 Sundaram V, Jalan R, Wu T. et al. Factors associated with survival of patients with severe acute-on-chronic liver failure before and after liver transplantation. Gastroenterology 2019; 156 (05) 1381-1391.e3
  • 45 Hernaez R, Liu Y, Kramer JR, Rana A, El-Serag HB, Kanwal F. Model for end-stage liver disease-sodium underestimates 90-day mortality risk in patients with acute-on-chronic liver failure. J Hepatol 2020; 73 (06) 1425-1433
  • 46 Abdallah MA, Kuo YF, Asrani S. et al. Validating a novel score based on interaction between ACLF grade and MELD score to predict waitlist mortality. J Hepatol 2021; 74 (06) 1355-1361
  • 47 Jalan R, Saliba F, Pavesi M. et al; CANONIC Study Investigators of the EASL-CLIF Consortium. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. J Hepatol 2014; 61 (05) 1038-1047
  • 48 McPhail MJW, Farne H, Senvar N, Wendon JA, Bernal W. Ability of King's College criteria and model for end-stage liver disease scores to predict mortality of patients with acute liver failure: a meta-analysis. Clin Gastroenterol Hepatol 2016; 14 (04) 516-525.e5 , quiz e43–e45
  • 49 Lee BP, Terrault NA. Early liver transplantation for severe alcoholic hepatitis: moving from controversy to consensus. Curr Opin Organ Transplant 2018; 23 (02) 229-236
  • 50 Kim W, Kim DJ. Severe alcoholic hepatitis-current concepts, diagnosis and treatment options. World J Hepatol 2014; 6 (10) 688-695
  • 51 Ntandja Wandji LC, Ningarhari M, Lassailly G. et al. Liver transplantation in alcohol-related liver disease and alcohol-related hepatitis. J Clin Exp Hepatol 2023; 13 (01) 127-138
  • 52 Mathurin P, Moreno C, Samuel D. et al. Early liver transplantation for severe alcoholic hepatitis. N Engl J Med 2011; 365 (19) 1790-1800
  • 53 Garcia-Saenz-de-Sicilia M, Duvoor C, Altamirano J. et al. A day-4 Lille model predicts response to corticosteroids and mortality in severe alcoholic hepatitis. Am J Gastroenterol 2017; 112 (02) 306-315
  • 54 Badillo R, Rockey DC. Hepatic hydrothorax: clinical features, management, and outcomes in 77 patients and review of the literature. Medicine (Baltimore) 2014; 93 (03) 135-142
  • 55 Moreau R, Delègue P, Pessione F. et al. Clinical characteristics and outcome of patients with cirrhosis and refractory ascites. Liver Int 2004; 24 (05) 457-464
  • 56 Bai X, Liu X, Shi Y, Li W, Li Q, Du W. Risk factors for hepatic hydrothorax in patients with cirrhosis: a clinical retrospective study. Front Med (Lausanne) 2023; 10: 1165604
  • 57 Pitton MB, Zimmermann T, Mildenberger P. et al. Decision making for transjugular intrahepatic portosystemic stent shunt in refractory ascites and variceal bleeding: MELD, or not MELD, that is the question. Eur J Gastroenterol Hepatol 2021; 33 (1S, Suppl 1): e214-e222
  • 58 Yardeni D, Shiloh A, Lipnizkiy I. et al. MELD-Na score may underestimate disease severity and risk of death in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). Sci Rep 2023; 13 (01) 22113
  • 59 Flavin CM. Guidance to liver transplant programs and the national liver review board for adult MELD exception review. Am J Transplant. Published online 2005. Accessed November 15, 2024 at: https://optn.transplant.hrsa.gov/media/1923/liver_adult_meld_exception_guidance_20160815.pdf
  • 60 Guerrini GP, Pinelli D, Marini E. et al. Value of HCC-MELD score in patients with hepatocellular carcinoma undergoing liver transplantation. Prog Transplant 2018; 28 (01) 63-69
  • 61 Mazzaferro V, Regalia E, Doci R. et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996; 334 (11) 693-699
  • 62 Ishaque T, Beckett J, Gentry S. et al. Waitlist outcomes for exception and non-exception liver transplant candidates in the United States following implementation of the median MELD at transplant (MMaT)/250-mile policy. Transplantation 2024; 108 (08) e170-e180
  • 63 Heimbach JK, Hirose R, Stock PG. et al. Delayed hepatocellular carcinoma model for end-stage liver disease exception score improves disparity in access to liver transplant in the United States. Hepatology 2015; 61 (05) 1643-1650
  • 64 Line PD, Dueland S. Liver transplantation for secondary liver tumours: the difficult balance between survival and recurrence. J Hepatol 2020; 73 (06) 1557-1562
  • 65 Line PD, Dueland S. Transplantation for colorectal liver metastasis. Curr Opin Organ Transplant 2024; 29 (01) 23-29
  • 66 Francoz C, Sola E. Assessment of renal function in cirrhosis: sarcopenia, gender and ethnicity matter. J Hepatol 2019; 70 (05) 828-830
  • 67 Asrani SK, Jennings LW, Trotter JF. et al. A Model for Glomerular Filtration Rate Assessment in Liver Disease (GRAIL) in the presence of renal dysfunction. Hepatology 2019; 69 (03) 1219-1230
  • 68 Asrani SK, Jennings LW, Kim WR. et al. MELD-GRAIL-Na: glomerular filtration rate and mortality on liver-transplant waiting list. Hepatology 2020; 71 (05) 1766-1774
  • 69 Chetwood JD, Wells MG, Tsoutsman T. et al. MELD-GRAIL and MELD-GRAIL-Na are not superior to MELD or MELD-Na in predicting liver transplant waiting list mortality at a single-center level. Transplant Direct 2022; 8 (07) e1346
  • 70 Kalafateli M, Wickham F, Burniston M. et al. Development and validation of a mathematical equation to estimate glomerular filtration rate in cirrhosis: the royal free hospital cirrhosis glomerular filtration rate. Hepatology 2017; 65 (02) 582-591
  • 71 Rodríguez-Perálvarez ML, Gómez-Orellana AM, Majumdar A. et al. Development and validation of the Gender-Equity Model for Liver Allocation (GEMA) to prioritise candidates for liver transplantation: a cohort study. Lancet Gastroenterol Hepatol 2023; 8 (03) 242-252
  • 72 Cholankeril G, Li AA, Dennis BB. et al. Pre-operative delta-MELD is an independent predictor of higher mortality following liver transplantation. Sci Rep 2019; 9 (01) 8312
  • 73 Györi GP, Silberhumer GR, Zehetmayer S. et al. Dynamic changes in MELD score not only predict survival on the waiting list but also overall survival after liver transplantation. Transpl Int 2012; 25 (09) 935-940
  • 74 Acar Ş, Akyıldız M, Gürakar A, Tokat Y, Dayangaç M. Delta MELD as a predictor of early outcome in adult-to-adult living donor liver transplantation. Turk J Gastroenterol 2020; 31 (11) 782-789
  • 75 Singh SP, Maiwall R. MELD 3.0: a better score for liver allocation?. Liver Transpl 2023; 29 (10) 1017-1018
  • 76 Allen AM, Heimbach JK, Larson JJ. et al. Reduced access to liver transplantation in women: role of height, MELD exception scores, and renal function underestimation. Transplantation 2018; 102 (10) 1710-1716
  • 77 Ge J, Kim WR, Lai JC, Kwong AJ. “Beyond MELD” - emerging strategies and technologies for improving mortality prediction, organ allocation and outcomes in liver transplantation. J Hepatol 2022; 76 (06) 1318-1329
  • 78 Ross-Driscoll K, Kramer M, Lynch R, Plantinga L, Wedd J, Patzer R. Variation in racial disparities in liver transplant outcomes across transplant centers in the United States. Liver Transpl 2021; 27 (04) 558-567
  • 79 Vyas DA, Eisenstein LG, Jones DS. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N Engl J Med 2020; 383 (09) 874-882
  • 80 Kim JH, Cho YJ, Choe WH, Kwon SY, Yoo BC. Model for end-stage liver disease-3.0 vs. model for end-stage liver disease-sodium: mortality prediction in Korea. Korean J Intern Med (Korean Assoc Intern Med) 2024; 39 (02) 248-260
  • 81 Tejedor M, Bellón JM, Fernández de la Varga M. et al. Validation of MELD3.0 in 2 centers from different continents. Hepatol Commun 2024; 8 (08) e0504
  • 82 Hogen R, Witt MH, Dhanireddy K. The sex disparity in liver transplantation. Curr Opin Organ Transplant 2023; 28 (04) 254-258
  • 83 Marrone G, Giannelli V, Agnes S. et al. Superiority of the new sex-adjusted models to remove the female disadvantage restoring equity in liver transplant allocation. Liver Int 2024; 44 (01) 103-112
  • 84 Rodríguez-Perálvarez ML, de la Rosa G, Gómez-Orellana AM. et al. GEMA-Na and MELD 3.0 severity scores to address sex disparities for accessing liver transplantation: a nationwide retrospective cohort study. EClinicalMedicine 2024; 74: 102737
  • 85 Tschuor C, Ferrarese A, Kuemmerli C, Dutkowski P, Burra P, Clavien PA. Liver Allocation Study Group. Allocation of liver grafts worldwide - Is there a best system?. J Hepatol 2019; 71 (04) 707-718
  • 86 Durand F. Development and outcomes of the French liver allocation system. Curr Opin Organ Transplant 2020; 25 (02) 132-138
  • 87 Allen E, Taylor R, Gimson A, Thorburn D. Transplant benefit-based offering of deceased donor livers in the United Kingdom. J Hepatol 2024; 81 (03) 471-478
  • 88 Barber K, Madden S, Allen J, Collett D, Neuberger J, Gimson A. United Kingdom Liver Transplant Selection and Allocation Working Party. Elective liver transplant list mortality: development of a United Kingdom end-stage liver disease score. Transplantation 2011; 92 (04) 469-476
  • 89 Asrani SK, Kim WR. Organ allocation for chronic liver disease: model for end-stage liver disease and beyond. Curr Opin Gastroenterol 2010; 26 (03) 209-213
  • 90 Attia A, Rowe IA, Harrison EM, Gordon-Walker T, Stutchfield BM. Implausible algorithm output in UK liver transplantation allocation scheme: importance of transparency. Lancet 2023; 401 (10380): 911-912
  • 91 Lee EG, Perini MV, Makalic E, Oniscu GC, Fink MA. External validation of the United Kingdom Transplant Benefit Score in Australia and New Zealand. Prog Transplant 2023; 33 (01) 25-33
  • 92 Müller PC, Kabacam G, Vibert E, Germani G, Petrowsky H. Current status of liver transplantation in Europe. Int J Surg 2020; 82S: 22-29
  • 93 Fosby B, Melum E, Bjøro K. et al. Liver transplantation in the Nordic countries - An intention to treat and post-transplant analysis from the Nordic Liver Transplant Registry 1982-2013. Scand J Gastroenterol 2015; 50 (06) 797-808
  • 94 Jochmans I, van Rosmalen M, Pirenne J, Samuel U. Adult liver allocation in Eurotransplant. Transplantation 2017; 101 (07) 1542-1550
  • 95 Goudsmit BFJ, Putter H, Tushuizen ME. et al. Validation of the Model for End-stage Liver Disease sodium (MELD-Na) score in the Eurotransplant region. Am J Transplant 2021; 21 (01) 229-240
  • 96 Chang CH, Bryce CL, Shneider BL. et al. Accuracy of the Pediatric End-stage Liver Disease score in estimating pretransplant mortality among pediatric liver transplant candidates. JAMA Pediatr 2018; 172 (11) 1070-1077
  • 97 McDiarmid SV, Anand R, Lindblad AS. Principal Investigators and Institutions of the Studies of Pediatric Liver Transplantation (SPLIT) Research Group. Development of a pediatric end-stage liver disease score to predict poor outcome in children awaiting liver transplantation. Transplantation 2002; 74 (02) 173-181
  • 98 Shneider BL, Suchy FJ, Emre S. National and regional analysis of exceptions to the Pediatric End-Stage Liver Disease scoring system (2003-2004). Liver Transpl 2006; 12 (01) 40-45
  • 99 Perito ER, Braun HJ, Dodge JL, Rhee S, Roberts JP. Justifying nonstandard exception requests for pediatric liver transplant candidates: an analysis of narratives submitted to the United Network for Organ Sharing, 2009–2014. Am J Transplant 2017; 17 (08) 2144-2154
  • 100 Hsu E, Schladt DP, Wey A, Perito ER, Israni AK. Improving the predictive ability of the pediatric end-stage liver disease score for young children awaiting liver transplant. Am J Transplant 2021; 21 (01) 222-228
  • 101 Salvalaggio PR, Neighbors K, Kelly S. et al. Regional variation and use of exception letters for cadaveric liver allocation in children with chronic liver disease. Am J Transplant 2005; 5 (08) 1868-1874
  • 102 Thalji L, Thalji NM, Heimbach JK. et al. Renal function parameters and serum sodium enhance prediction of wait-list outcomes in pediatric liver transplantation. Hepatology 2021; 73 (03) 1117-1131
  • 103 Kwong AJ, Zhang KY, Ebel N, Mannalithara A, Kim WR. MELD 3.0 for adolescent liver transplant candidates. Hepatology 2023; 78 (02) 540-546
  • 104 Zaver HB, Rajpal N, Shah NL, Argo CK. MELD and MELD 3.0: what it means for your practice. Am J Gastroenterol 2024; 119 (10) 1951-1954
  • 105 Kim WR. MELD 3.0: a model to predict survival in patients with end-stage liver disease. Hepatology 2008; 48 (04) 1172-1179