Subscribe to RSS
DOI: 10.1055/a-2442-1796
Visible-Light-Mediated Strain-Release Radical Spirocyclizations: Access to Functionalized Spirocyclobutanes
Financial support from the Science and Engineering Research Board (SERB), Government of India (File CRG/2022/007372), is greatly acknowledged. T.S. thanks the Ministry of Education, Government of India, for a PMRF fellowship.
![](https://www.thieme-connect.de/media/synlett/EFirst/lookinside/thumbnails/st-2024-a0320-a_10-1055_a-2442-1796-1.jpg)
Abstract
Spirocyclobutanes have gained significant attention in medicinal chemistry discovery programs due to their broad spectrum of biological activities and clinical applications. Utilizing ring strain in small molecules to drive organic transformations is one of the most powerful tools in chemical synthesis. Our research group has focused on developing new synthetic strategies enabled by ring strain to construct complex molecules selectively and efficiently. This account summarizes our recent efforts toward the synthesis of a library of functionalized spirocyclobutanes by harnessing the ring strain of bicyclo[1.1.0]butanes. Three spicrocyclization cascades have been developed to incorporate a diverse range of radical precursors into spirocycobutanes.
1 Introduction
2 Synthesis of Spirocyclobutyl Lactones and -Lactams using Bifunctional Reagents
3 Dual Photoredox/Nickel Catalysis for the Synthesis of Spirocyclobutyl Lactams
4 Synthesis of Spirocyclobutyl Oxindoles under Photoredox Catalysis
5 DFT Studies
6 Conclusion
Key words
bicyclo[1.1.0]butane - strain-release - photoredox catalysis - radicals - spirocyclobutanes - dual catalysis - bifunctional reagentsPublication History
Received: 23 September 2024
Accepted after revision: 15 October 2024
Accepted Manuscript online:
15 October 2024
Article published online:
05 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Lovering F. MedChemComm 2013; 4: 515
- 1b Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 2 Prosser KE, Stokes RW, Cohen SM. ACS Med. Chem. Lett. 2020; 11: 1292
- 3a Rice MA, Malhotra SV, Stoyanova T. Front. Oncol. 2019; 9: 477083
- 3b van der Kolk MR, Janssen MA. C. H, Rutjes FP. J. T, Blanco-Ania D. ChemMedChem 2022; 17: e202200020
- 4 Canney DJ, Blass BE, Gao R, Abou-Gharbia M. WO2016040554, 2016
- 5 Wei W, Cherukupalli S, Jing L, Liu X, Zhan P. Drug Discovery Today 2020; 25: 1839
- 6a Reisman SE, Ready JM, Hasuoka A, Smith CJ, Wood JL. J. Am. Chem. Soc. 2006; 128: 1448
- 6b Yoshikawa M, Kamisaki H, Kunitomo J, Oki H, Kokubo H, Suzuki A, Ikemoto T, Nakashima K, Kamiguchi N, Harada A, Kimura H, Taniguchi T. Bioorg. Med. Chem. 2015; 23: 7138
- 7a Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
- 7b Boddy AJ, Bull JA. Org. Chem. Front. 2021; 8: 1026
- 8a Turkowska J, Durka J, Gryko D. Chem. Commun. 2020; 56: 5718
- 8b Kelly CB, Milligan JA, Tilley LJ, Sodano TM. Chem. Sci. 2022; 13: 11721
- 8c Bellotti P, Glorius F. J. Am. Chem. Soc. 2023; 145: 20716
- 9 Golfmann M, Walker JC. L. Commun. Chem. 2023; 6: 9
- 10a Gianatassio R, Lopchuk JM, Wang J, Pan C.-M, Malins LR, Prieto L, Brandt TA, Collins MR, Gallego GM, Sach NW, Spangler JE, Zhu H, Zhu J, Baran PS. Science 2016; 351: 241
- 10b Silvi M, Aggarwal VK. J. Am. Chem. Soc. 2019; 141: 9511
- 10c Ernouf G, Chirkin E, Rhyman L, Ramasami P, Cintrat J.-C. Angew. Chem. Int. Ed. 2020; 59: 2618
- 10d Majhi J, Dhungana RK, Rentería-Gómez Á, Sharique M, Li L, Dong W, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2022; 144: 15871
- 10e Wang H, Erchinger JE, Lenz M, Dutta S, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2023; 145: 23771
- 10f Guin A, Bhattacharjee S, Harariya MS, Biju AT. Chem. Sci. 2023; 14: 6585
- 10g Pickford HD, Ripenko V, McNamee RE, Holovchuk S, Thompson AL, Smith RC, Mykhailiuk PK, Anderson EA. Angew. Chem. Int. Ed. 2023; 62: e202213508
- 11a Kleinmans R, Dutta S, Ozols K, Shao H, Schäfer F, Thielemann RE, Chan HT, Daniliuc CG, Houk KN, Glorius F. J. Am. Chem. Soc. 2023; 145: 12324
- 11b Kleinmans R, Pinkert T, Dutta S, Paulisch TO, Keum H, Daniliuc CG, Glorius F. Nature 2022; 605: 477
- 11c Liang Y, Kleinmans R, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2022; 144: 20207
- 11d Liang Y, Paulus F, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2023; 62: e202305043
- 11e Zheng Y, Huang W, Dhungana RK, Granados A, Keess S, Makvandi M, Molander GA. J. Am. Chem. Soc. 2022; 144: 23685
- 11f Nguyen TV. T, Bossonnet A, Wodrich MD, Waser J. J. Am. Chem. Soc. 2023; 145: 25411
- 12a Dasgupta A, Bhattacharjee S, Tong Z, Guin A, McNamee RE, Christensen KE, Biju AT, Anderson EA. J. Am. Chem. Soc. 2024; 146: 1196
- 12b Lin S.-L, Chen Y.-H, Liu H.-H, Xiang S.-H, Tan B. J. Am. Chem. Soc. 2023; 145: 21152
- 13a Bychek R, Mykhailiuk PK. Angew. Chem. Int. Ed. 2022; 61: e202205103
- 13b Bychek RM, Hutskalova V, Bas YP, Zaporozhets OA, Zozulya S, Levterov VV, Mykhailiuk PK. J. Org. Chem. 2019; 84: 15106
- 14 Huang H.-M, Bellotti P, Ma J, Dalton T, Glorius F. Nat. Rev. Chem. 2021; 5: 301
- 15a Bär RM, Heinrich G, Nieger M, Fuhr O, Bräse S. Beilstein J. Org. Chem. 2019; 15: 1172
- 15b Teders M, Henkel C, Anhäuser L, Strieth-Kalthoff F, Gómez-Suárez A, Kleinmans R, Kahnt A, Rentmeister A, Guldi D, Glorius F. Nat. Chem. 2018; 10: 981
- 16 Das K, Pedada A, Singha T, Hari DP. Chem. Sci. 2024; 15: 3182
- 17 Zhu C, Yue H, Chu L, Rueping M. Chem. Sci. 2020; 11: 4051
- 18 Singha T, Bapat NA, Mishra SK, Hari DP. Org. Lett. 2024; 26: 6396
- 19a Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L. Int. J. Mol. Med. 2017; 40: 271
- 19b Knowles JR. Annu. Rev. Biochem. 1980; 49: 877
- 20 Shah P, Westwell AD. J. Enzyme Inhib. Med. Chem. 2007; 22: 527