Die Wirbelsäule 2025; 09(01): 21-26
DOI: 10.1055/a-2377-6394
Übersicht

Navigation versus Robotik in der Wirbelsäulenchirurgie – Pro Robotik

Navigation Versus Robotics in Spinal Surgery – Pro Robotics
Manfred Kudernatsch
1   Abteilung für Neurochirurgie und Epilepsiechirurgie, Wirbelsäulenchirurgie und Skoliose, Schön Klinik Vogtareuth, Vogtareuth, Deutschland
› Author Affiliations

Zusammenfassung

Der erste durch einen Roboter unterstützte Wirbelsäuleneingriff wurde vor 20 Jahren durchgeführt. Zu diesem Zeitpunkt waren bereits optische Navigationssysteme verfügbar, die überwiegend kranial, aber auch spinal eingesetzt wurden. Verglichen mit der sich rasch verbreitenden Navigation etablierte sich die spinale Robotik anfangs nur langsam. In den letzten zehn Jahren gab es jedoch einen entscheidenden Entwicklungsschub, bei dem die optische Navigation mit robotischen Assistenzarmen kombiniert wurde. Aktuell kommen auch in der Wirbelsäulenchirurgie erste aktive Endeffektoren zum Einsatz. Durch das ideale Zusammenspiel mit intraoperativer 3D-Bildgebung bieten moderne navigierte OP-Roboter eine sehr präzise, sichere, zeit- und strahlensparende Unterstützung im OP-Saal. Nicht nur der Patient, sondern auch das OP-Personal – OTA und Operateure – profitieren von dieser Technologie. Es gelingt komplexe spinale Operationen mit einem niedrigeren physischen und psychischen Anspannungsgrad durchzuführen. Die Integration von künstlicher Intelligenz (KI), maschinellem Lernen (ML), Augmented Reality (AR) sowie die Weiterentwicklung aktiver Funktionen bieten zukünftig weitreichende Innovationsmöglichkeiten in der Operationsplanung und Durchführung. Navigierte robotische Assistenz stellt somit nicht nur eine konsequente Weiterentwicklung der spinalen Navigation dar, sondern ist ein Instrument im Operationssaal, welches das Potential hat, synergistisch mit dem Operateur zu interagieren.

Abstract

The first robot-assisted spinal procedure was performed 20 years ago. At that time, optical navigation systems had already been available for several years and were used primarily cranially but also increasingly spinally. Compared to the rapidly spreading navigation, spinal robotics initially established itself only slowly. In the last ten years, however, there has been a decisive development in which optical navigation was combined with robotic assistance arms. Currently, the first active end effectors are also being used in spinal surgery. In particular, due to the ideal interaction with intraoperative 3D imaging, modern navigated surgical robots provide very precise, safe, time- and radiation-saving support in the operating room. Not only the patient but also the operating room staff – OTA and surgeons – benefit from this technology. Complex spinal operations can be carried out with a lower level of physical and psychological stress. The integration of artificial intelligence (AI), machine learning (ML), augmented reality and further development of active functions offer far-reaching innovation opportunities in the field of surgical planning and execution in the future. Therefore, navigated robotic assistance represents not only a logical further development of spinal navigation but also a tool in the operating room that has the potential to interact synergistically with the surgeon.



Publication History

Article published online:
27 January 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Kwoh YS, Hou J, Jonckheere EA. et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 1988; 35: 153-160
  • 2 Lanfranco AR, Castellanos AE, Desai JP. et al. Robotic surgery: a current perspective. Ann Surg 2004; 239: 14-21
  • 3 Overley SC, Cho SK, Mehta AI. et al. Navigation and Robotics in Spinal Surgery: Where Are We Now?. Neurosurgery 2017; 80: S86-S99
  • 4 Dogangil G, Davies BL, Rodriguez y Baena F. A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng H 2010; 224: 653-679
  • 5 Shweikeh F, Amadio JP, Arnell M. et al. Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus 2014; 36: E10
  • 6 D'Souza M, Gendreau J, Feng A. et al. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. Robot Surg 2019; 6: 9-23
  • 7 Zygourakis CC, Ahmed AK, Kalb S. et al. Technique: open lumbar decompression and fusion with the Excelsius GPS robot. Neurosurg Focus 2018; 45: V6
  • 8 Devito DP, Kaplan L, Dietl R. et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976) 2010; 35: 2109-2115
  • 9 Kotani Y, Abumi K, Ito M. et al. Improved accuracy of computer-assisted cervical pedicle screw insertion. J Neurosurg 2003; 99: 257-63
  • 10 Rajasekaran S, Vidyadhara S, Ramesh P. et al. Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine (Phila Pa 1976) 2007; 32: E56-64
  • 11 Kantelhardt SR, Martinez R, Baerwinkel S. et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 2011; 20: 860-868
  • 12 Le X, Tian W, Shi Z. et al. Robot-Assisted Versus Fluoroscopy-Assisted Cortical Bone Trajectory Screw Instrumentation in Lumbar Spinal Surgery: A Matched-Cohort Comparison. World Neurosurg 2018; 120: e745-e751
  • 13 Wang JQ, Wang Y, Feng Y. et al. Percutaneous Sacroiliac Screw Placement: A Prospective Randomized Comparison of Robot-assisted Navigation Procedures with a Conventional Technique. Chin Med J (Engl) 2017; 130: 2527-2534
  • 14 Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives. Neurosurgery 2013; 72: 12-18
  • 15 Cardinale F, Cossu M. SEEG has the lowest rate of complications. J Neurosurg 2015; 122: 475-477
  • 16 Spyrantis A, Cattani A, Woebbecke T. et al. Electrode placement accuracy in robot-assisted epilepsy surgery: A comparison of different referencing techniques including frame-based CT versus facial laser scan based on CT or MRI. Epilepsy Behav 2019; 91: 38-47
  • 17 Faraji AH, Gersey ZC, Corson DM. et al. Operative Technique and Nuances for the Stereoelectroencephalographic (SEEG) Methodology Utilizing a Robotic Stereotactic Guidance System. J Vis Exp 2023; 196
  • 18 Vasconcellos FN, Almeida T, Müller Fiedler A. et al. Robotic-Assisted Stereoelectroencephalography: A Systematic Review and Meta-Analysis of Safety, Outcomes, and Precision in Refractory Epilepsy Patients. Cureus 2023; 15: e47675
  • 19 Shafi K, Lovecchio F, Song J. et al. Robotic-Assisted Single-Position Prone Lateral Lumbar Interbody Fusion: Indications, Techniques, and Outcomes. JBJS Essent Surg Tech 2023; 13: e22 00022
  • 20 Sinkov V, Lockey SD, Cunningham BW. Single Position Lateral Lumbar Interbody Fusion With Posterior Instrumentation Utilizing Computer Navigation and Robotic Assistance: Retrospective case review and surgical technique considerations. Global Spine J 2022; 12: 75S-81S