Synthesis 2024; 56(20): 3142-3146
DOI: 10.1055/a-2359-8893
paper
Flow Chemistry

Efficient Flow Synthesis of Glycidyl Ether Using BuSnCl3 as a Mild Lewis Acid

Takayoshi Kasakado
a   Organization for Research Promotion, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
,
Masahito Nakamura
b   Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, 558-8585, Japan
,
Akihiro Nishizawa
c   Nagase ChemteX Corporation, Tatsuno, Hyogo 679-4124, Japan
,
Tetsuya Hosomi
c   Nagase ChemteX Corporation, Tatsuno, Hyogo 679-4124, Japan
,
Ilhyong Ryu
a   Organization for Research Promotion, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
d   Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu 30010, Taiwan
,
b   Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, 558-8585, Japan
› Author Affiliations
We wish to thank the Japan Society for the Promotion of Science (JSPS) for funding through a Grant-in-Aid for Scientific Research (B) (No. 19H02722) and Scientific Research (C) (No. 24K08433).


Abstract

A ring-opening protocol of epichlorohydrin with 2-ethylhexanol was investigated for the synthesis of the corresponding chlorohydrin ether. BuSnCl3 proved to be an efficient mild Lewis acid catalyst, yielding the product with high selectivity. A scalable flow synthesis was achieved by modifying the flow setup. The flow synthesis of the corresponding glycidyl ether from the chlorohydrin ether was also carried out in an efficient manner by using the basic treatment.

Supporting Information



Publication History

Received: 13 April 2024

Accepted after revision: 03 July 2024

Accepted Manuscript online:
03 July 2024

Article published online:
24 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 2a Matthes R, Frey H. Biomacromolecules 2022; 23: 2219
    • 2b Matykiewicz D, Skorczewska K. Materials 2022; 15: 4824
    • 2c Baek J, Kim M, Park Y, Kim B.-S. Macromol. Biosci. 2021; 21: 2100251
    • 2d Caillol S, Boutevin B, Auvergne R. Polymer 2021; 223: 123663
    • 2e Thomas A, Mueller SS, Frey H. Biomacromolecules 2014; 15: 1935
    • 2f Urata K, Takaishi N. J. Am. Oil Chem. Soc. 1996; 73: 819
    • 2g Urata K, Takahashi N. J. Am. Oil Chem. Soc. 1994; 71: 1027

      For selected examples, see:
    • 3a Malburet S, Bertrand H, Richard C, Lacabanne C, Dantras E, Graillot A. RSC Adv. 2023; 13: 15099
    • 3b Luo H, Yin Y, Wang Y, Li Q, Tang A, Liu Y. Int. J. Adhes. Adhes. 2022; 114: 103026
    • 3c Luo J, Luo J, Zhang J, Bai Y, Gao Q, Li J, Li L. Polymers 2016; 8: 346
    • 3d Morita Y. J. Appl. Polym. Sci. 2005; 97: 1395
    • 4a Shi X.-L, Sun B, Hu Q, Chen Y, Duan P. Green Chem. 2019; 21: 3573
    • 4b Moghadam M, Tangestaninejad S, Mirkhani V, Shaibani R. Tetrahedron 2004; 60: 6105
    • 4c Tamura R, Fujimoto D, Lepp Z, Misaki K, Miura H, Takahasi H, Ushio T, Nakai T, Hirotsu K. J. Am. Chem. Soc. 2002; 124: 13139
    • 4d Pederson RL, Liu KK.-C, Rutan JF, Chen L, Wong C.-H. J. Org. Chem. 1990; 55: 4897
    • 4e Otera J, Niibo Y, Tsutsumi N, Nozaki H. J. Org. Chem. 1988; 53: 275
    • 4f Nakatsuji Y, Nakamura T, Okahara M, Dishong DM, Gokel GW. J. Org. Chem. 1983; 48: 1237
    • 4g Dishong DM, Diamond CJ, Cinoman MI, Gokel GW. J. Am. Chem. Soc. 1983; 105: 586

      For selected reports on BuSnCl3-catalyzed reactions, see:
    • 5a Funfuenha W, Punyodom W, Meepowpan P, Limwanich W. Polym. Bull. 2024; 81: 475
    • 5b da Silva EP. S, Meneghetti SM. P. Mol. Catal. 2022; 528: 112499
    • 5c da Silva DS, Altino FM. R. S, Bortoluzzi JH, Meneghetti SM. P. Mol. Catal. 2020; 494: 111130
    • 5d Iwasaki S, Maki T, Onomura O, Nakashima W, Matsumura Y. J. Org. Chem. 2000; 65: 996
    • 5e Chen X, McCarthy SP, Gross RA. Macromolecules 1997; 30: 3470
    • 5f Kricheldorf HR, Mahler A. Polymer 1996; 37: 4383
    • 5g Marton D, Slaviero P, Tagliavini G. Tetrahedron 1989; 45: 7099

      For selected reviews, see:
    • 6a Fukuyama T, Totoki T, Ryu I. Green Chem. 2014; 16: 2042
    • 6b Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
    • 6c Kobayashi S. Chem. Asian J. 2016; 11: 425
    • 6d Marcus M, Moody TS, Smyth M, Wharry S. Org. Process Res. Dev. 2020; 24: 1802
    • 6e Fukuyama T, Kasakado T, Hyodo M, Ryu I. Photochem. Photobiol. Sci. 2022; 21: 761
    • 6f Buglioni L, Raymenants F, Slattery A, Zondag SD. A, Noël T. Chem. Rev. 2022; 122: 2752
    • 6g Rodriguez-Zubiri M, Felpin F.-X. Org. Process Res. Dev. 2022; 26: 1766
    • 6h Lin G, Qiu H. Chem. Eur. J. 2022; 28: e202200069
    • 6i Del Vecchio A, Smallman HR, Morvan J, McBride T, Browne DL, Mauduit M. Angew. Chem. Int. Ed. 2022; 61: e202209564
    • 6j Kanya N, Zsigmond TS, Hergert T, Lovei K, Dorman G, Kalman F, Darvas F. Org. Process Res. Dev. 2024; 28: 1288
    • 6k Hayes HL. D, Mallia CJ. Org. Process Res. Dev. 2024; 28: 1327
    • 6l Laporte AA. H, Masson TM, Zondag SD. A, Noël T. Angew. Chem. Int. Ed. 2024; 6: e202316108
    • 6m Fukuyama T, Dakegata A, Ryu I. ARKIVOC 2024; (ii): 202312077

      For our recent reports, see:
    • 7a Watanabe H, Takemoto M, Adachi K, Okuda Y, Dakegata A, Fukuyama T, Ryu I, Wakamatsu K, Orita A. Chem. Lett. 2020; 49: 409
    • 7b Kasakado T, Hyodo M, Furuta A, Kamardine A, Ryu I, Fukuyama T. J. Chin. Chem. Soc. 2020; 67: 2253
    • 7c Kasakado T, Hirobe Y, Furuta A, Hyodo M, Fukuyama T, Ryu I. Molecules 2021; 26 Article No. 5845
    • 7d Hyodo M, Iwano H, Kasakado T, Fukuyama T, Ryu I. Micromachines 2021; 12: 1307
    • 7e Kasakado T, Fukuyama T, Nakagawa T, Taguchi S, Ryu I. Beilstein J. Org. Chem. 2022; 18: 152
    • 7f Takabayashi R, Feser S, Yonehara H, Ryu I, Fukuyama T. Polym. Chem. 2023; 14: 4515
    • 7g Shih Y.-L, Wu Y.-K, Hyodo M, Ryu I. J. Org. Chem. 2023; 88: 6548