Synthesis
DOI: 10.1055/a-2353-1618
paper
Special Topic Dedicated to Prof. H. Ila

Stereoselective Synthetic Routes to Iminosugars: A Divergent Approach Utilizing a Common Multifunctional Chiral Scaffold

Srinath Pashikanti
a   Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S. 8th Avenue, Stop 8288, Pocatello, ID 83209, USA
,
Apurba Datta
b   Department of Medicinal Chemistry, University of Kansas, Room 1083 Del Shankel Structural Biology Center, 2034 Becker Drive, Lawrence, KS 66047, USA
› Author Affiliations


Dedicated to Professor H. Ila on her 80th birthday.

Abstract

Starting from an l-serine-derived multifunctional aminobutenolide as a common chiral building block, stereoselective synthetic routes to representative examples of di-, tri-, and tetrahydroxylated iminosugars have been developed. Key steps in the synthetic routes involved an intramolecular aminolysis protocol to form the azaheterocyclic core, and functionalization of a resident alkene moiety towards installation of the desired substituents at the various positions of the piperidine ring. The strategy and the approach described are expected to provide flexible synthetic routes to various iminosugar scaffolds of structural and medicinal chemical significance.

Supporting Information



Publication History

Received: 06 May 2024

Accepted after revision: 26 June 2024

Accepted Manuscript online:
26 June 2024

Article published online:
22 July 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 The studies described here are based on previously unpublished results from Srinath Pashikanti’s doctoral dissertation titled A serine-derived butenolide as a versatile chiral building block: Applications in the synthesis of natural and nature-like compounds of biological significance as submitted to the University of Kansas, Lawrence, KS, USA (accessed Jul 12, 2024): https://kuscholarworks.ku.edu/handle/1808/21638
    • 2a Asano N. Curr. Top. Med. Chem. 2003; 3: 471
    • 2b Magalhaes AF, Santos CC, Magalhaes EG, Nogueira MA. Phytochem. Anal. 2002; 13: 215
    • 2c Watson AA, Fleet GW. J, Asano N, Molyneux RJ, Nash RJ. Phytochemistry 2001; 56: 265 ; and references therein
    • 3a Conforti I, Marra A. Org. Biomol. Chem. 2021; 19: 5439
    • 3b Wadood A, Ghufran M, Khan A, Azam SS, Jelani M, Uddin R. Int. J. Biol. Macromol. 2018; 111: 82
    • 3c Iminosugars. From Synthesis to Therapeutic Applications . Compain P, Martin OR. Wiley-VCH; Weinheim: 2007
    • 3d Iminosugars as Glycosidase Inhibitors. Nojirimycin and Beyond. Stütz AE. Wiley-VCH; Weinheim: 1999
    • 4a Lillelund VH, Jensen HH, Liang X, Bols M. Chem. Rev. 2002; 102: 515
    • 4b Winchester B, Fleet GW. J. Glycobiology 1992; 2: 199
  • 5 Storer R, Horne GG. Innovations Pharm. Technol. 2010; 64
  • 6 Ferhati X, Matassini C, Fabbrini MG, Goti A, Morrone A, Cardona F, Moreno-Vargas AJ, Paoli P. Bioorg. Chem. 2019; 87: 534 ; and references therein
    • 7a Ferjancic Z, Bihelovic F, Vulovic B, Matovic R, Trmcic M, Jankovic A, Pavlovic M, Djurkovic F, Prodanovic R, Djelmas AD, Kalicanin N, Zlatovic M, Sladic D, Vallet T, Vignuzzi M, Saicic RN. J. Enzyme Inhib. Med. Chem. 2024; 39: 2289007
    • 7b Perera N, Brun J, Alonzi DS, Tyrrell BE, Miller JL, Zitzmann N. Antiviral Res. 2022; 199: 105269
    • 7c Tyrrell BE, Sayce AC, Warfield KL, Miller JL, Zitzmann N. Crit. Rev. Microbiol. 2017; 43: 521
    • 7d Alonzi DS, Scott KA, Dwek RA, Zitzmann N. Biochem. Soc. Trans. 2017; 45: 571 ; and references therein
    • 8a Wrodnigg TM, Steiner AJ, Ueberbacher BJ. Anti-Cancer Agents Med. Chem. 2008; 8: 77
    • 8b Weiss M, Hettmer S, Smith P, Ladisch S. Cancer Res. 2003; 63: 3654
    • 9a D’Alonzo D, De Fenza M, Porto C, Iacono R, Huebecker M, Cobucci-Ponzano B, Priestman DA, Platt F, Parenti G, Moracci M, Palumbo G, Guaragna A. J. Med. Chem. 2017; 60: 9462
    • 9b Boyd RE, Lee G, Rybczynski P, Benjamin ER, Khanna R, Wustman BA, Valenzano KJ. J. Med. Chem. 2013; 56: 2705
    • 9c Butters TD, Dwek RA, Platt FM. Curr. Top. Med. Chem. 2003; 3: 561
    • 9d Butters TD, Dwek RA, Platt FM. Chem. Rev. 2000; 100: 4683
    • 10a Esposito A, D’Alonzo D, De Fenza M, De Gregorio E, Tamanini A, Lippi G, Dechecchi MC, Guaragna A. Int. J. Mol. Sci. 2020; 21: 3353
    • 10b Li Q, Ye X. Isr. J. Chem. 2015; 55: 336
    • 10c Wang G, Xiong Y, Ye J, Zhang L, Ye X. ACS Med. Chem. Lett. 2011; 2: 682 ; and references therein
    • 11a De Pasquale V, Esposito A, Scerra G, Scarcella M, Ciampa M, Luongo A, D’Alonzo D, Guaragna A, D’Agostino M, Pavone LM. J. Med. Chem. 2023; 66: 1790
    • 11b Horne G, Wilson FX, Tinsley J, Williams DH, Storer R. Drug Discovery Today 2011; 16: 107
    • 11c Winchester BG. Tetrahedron: Asymmetry 2009; 20: 645
  • 12 For a review, see: Kumar Y, Goyal RK, Thakur AK. J. Anal. Pharm. Res. 2018; 7: 617
    • 13a Giraldo P, Andrade-Campos M, Alfonso P, Irun P, Atutxa K, Acedo A, Barez A, Blanes M, Diaz-Morant V, Fernández-Galán MA, Franco R, Gil-Cortes C, Giner V, Ibañez A, Latre P, Loyola I, Luño E, Hernández-Martin R, Medrano-Engay B, Puerta J, Roig I, de la Serna J, Salamero O, Villalón L, Pocovi M. Blood Cells, Mol., Dis. 2018; 68: 173
    • 13b Ficicioglu C. Ther. Clin. Risk Manage. 2008; 4: 425
    • 15a Mueller MS, Sidharta PN, Voors-Pette C, Darpo B, Xue H, Dingemanse J. Orphanet J. Rare Dis. 2020; 15: 303
    • 15b Guérard N, Oder D, Nordbeck P, Zwingelstein C, Morand O, Welford RW. D, Dingemanse J, Wanner C. Clin. Pharmacol. Ther. 2018; 103: 703
  • 16 Durantel D. Curr. Opin. Invest. Drugs 2009; 10: 860
    • 17a Rajasekharan S, Milan Bonotto R, Nascimento Alves L, Kazungu Y, Poggianella M, Martinez-Orellana P, Skoko N, Polez S, Marcello A. Viruses 2021; 13: 808
    • 17b Clarke EC, Nofchissey RA, Ye C, Bradfute SB. Glycobiology 2021; 31: 378
    • 17c Williams SJ, Goddard-Borger ED. Biochem. Soc. Trans. 2020; 48: 1287 ; and references therein

      For reviews, see:
    • 18a Refs. 2a and 2b
    • 18b Benett JJ, Murphy PV. Carbohydr. Res. 2023; 529: 108845
    • 18c Swanson CR. B, Ford GJ, Mattey AP, Gourbeyre L, Flitsch S. ACS Cent. Sci. 2023; 9: 103
    • 18d Clemente F, Matassini C, Cardona F. Eur. J. Org. Chem. 2020; 4447
    • 18e Malik M, Jarosz S. Carbohydr. Chem. 2017; 42: 313 ; and references therein

      For some representative publications, see:
    • 19a Hunt-Painter AA, Deeble BM, Stocker BL, Timmer MS. M. ACS Omega 2022; 7: 28756
    • 19b Sunde-Brown P, Jenkins ID, Houston TA. J. Org. Chem. 2022; 87: 16895
    • 19c Das P, Ajay S, Shaw AK. Tetrahedron Lett. 2017; 58: 419
    • 19d Petakamsetty R, Jain VK, Majhi PK, Ramapanicker R. Org. Biomol. Chem. 2015; 13: 8512 ; and references therein
    • 20a For a recent report, see: Puet A, Dominguez G, Canada FJ, Perez-Castells J. Molecules 2021; 26: 394
    • 20b Kim J.-Y, Mu Y, Jin X, Park S.-H, Pham V.-T, Song D.-K, Lee K.-Y, Ham W.-H. Tetrahedron 2011; 67: 9426

      For representative publications, see:
    • 21a Cordero FM, Vurchio C, Brandi AA. J. Org. Chem. 2016; 81: 1661
    • 21b Kummeter M, Kazmaier U. Eur. J. Org. Chem. 2003; 3330
  • 22 Bhaket P, Stauffer CS, Datta A. J. Org. Chem. 2004; 69: 8594
  • 23 For a recent example, see: Pashikanti S, Ukani R, David SA, Datta A. Synthesis 2017; 49: 2088 ; and references therein
  • 24 Bhaket P, Morris K, Stauffer CS, Datta A. Org. Lett. 2005; 7: 875
  • 25 For a reported synthesis, see: Ruan S.-T, Luo J.-M, Du Y, Huang P.-Q. Org. Lett. 2011; 13: 4938
  • 26 van den Berg RJ. B. H. N, Wennekes T, Ghisaidoobe A, Donker-Koopman WE, Strijland A, Boot RG, van der Marel GA, Aerts JM. F. G, Overkleeft HS. ACS Med. Chem. Lett. 2011; 2: 519 ; and references therein
    • 27a Ortuno RM, Cardellach J, Font J. J. Heterocycl. Chem. 1987; 24: 79
    • 27b Jakubowski AA, Guziec FS, Sugiura M, Tam CC, Tishler M, Omura S. J. Org. Chem. 1982; 47: 1221

      For representative examples, see:
    • 28a Churruca F, Fousteris M, Ishikawa Y, von Wantoch Rekowski M, Hounsou C, Surrey T, Giannis A. Org. Lett. 2010; 12: 2096
    • 28b Ding F, Jennings MP. J. Org. Chem. 2008; 73: 5965 ; and references therein
  • 29 During the review of the manuscript, one of the reviewers commented about the potential conversion of epoxy lactone 15 into amino diol 17 in a one-pot reaction using formic acid, acting both as a H-donor reagent in the hydrogenolysis of the epoxide, as well as in its usual role as an acid for hydrolysis of the O,N-acetonide moiety. This is an interesting observation, and there are literature reports wherein hydrogenolysis of epoxides have been performed using formic acid as the H-donor, although requiring the presence of suitable metal catalysts; see: Yao Y.-X, Zhang H.-W, Lu C.-B, Shang H.-Y, Tian Y.-Y. Eur. J. Org. Chem. 2023; 26: e202300111 ; and references therein. From a mechanistic viewpoint, the epoxide hydrogenolytic reaction pathway has been proposed to involve the formation of an epoxide ring-opened enolic intermediate and its tautomerism to the carbonyl form (Meinwald rearrangement) followed by its subsequent reduction to the alcohol. Unfortunately, while the above-mentioned hydrogenolysis reaction was found to work well with monosubstituted epoxides, the corresponding reaction with 1,2-disubstituted or bicyclic epoxides was either low yielding or did not work at all. Considering the structural features of bicyclic epoxy lactone 15 and concerns with its reactivity profile, in our present study we, however, did not investigate a formic acid assisted epoxide hydrogenolysis and acetonide hydrolysis in a one-pot reaction protocol
    • 30a Davies SG, Fletcher AM, Roberts PM, Thomson JE. Tetrahedron 2019; 75: 130727
    • 30b Squarcia A, Vivolo F, Weinig H.-G, Passacantilli P, Piancatelli G. Tetrahedron Lett. 2002; 43: 4653
  • 31 Poon KW. C, Liang N, Datta A. Nucleosides, Nucleotides Nucleic Acids 2008; 27: 389 ; and references therein

    • For representative previous syntheses, see:
    • 32a Muniraju C, Rao MV, Rajender A, Rao BV. Tetrahedron Lett. 2016; 57: 1763
    • 32b Chavan SP, Dumare NB, Pawar KP, Chavan PN, Khairnar L. ARKIVOC 2016; (ii): 137
    • 32c Azad CS, Saxena AK. Org. Chem. Front. 2015; 2: 665
    • 32d Davies SG, Figuccia AL. A, Fletcher AM, Roberts PM, Thomson JE. Org. Lett. 2013; 15: 2042
    • 32e van den Nieuwendijk AM. C. H, van den Berg RJ. B. H. N, Ruben M, Witte MD, Brussee J, Boot RG, van der Marel GA, Aerts JM. F. G, Overkleeft HS. Eur. J. Org. Chem. 2012; 3437
    • 32f Gupta P, Vankar YD. Eur. J. Org. Chem. 2009; 1925
    • 32g Guaragna A, D’Errico S, D’Alonzo D, Pedatella S, Palumbo G. Org. Lett. 2007; 9: 3473 ; and references therein
  • 33 Nishimura Y, Adachi H, Satoh T, Shitara E, Nakamura H, Kojima F, Takeuchi T. J. Org. Chem. 2000; 65: 4871