Synthesis 2024; 56(17): 2687-2694
DOI: 10.1055/a-2338-8631
paper

1,3-Dipolar Cycloaddition of Diazophosphonates with Methyl(Ethyl) Acrylate for the Synthesis of 5-Arylpyrazole-3-carboxylates

Nikolay A. Zinovyev
,
Irina P. Beletskaya
,
This work was supported by the grant of the Ministry of Education and Science of the Russian Federation (agreement of 24.04.2024 no. 075-15-2024-547).


Abstract

A wide range of α-aryl-α-diazophosphonates were easily prepared via modified diazo transfer reaction. Benzylphoshonates reacted with tosyl azide (TsN3) in the presence of potassium tert-butoxide (KOtBu) to afford diazophosphonates in yields up to 93% (generally 70–80%). Aryldiazophosponates were successfully explored for the synthesis of 5-aryl-substituted pyrazol-3-carboxylates in one pot by the 1,3-dipolar cycloaddition with alkyl acrylates followed by NaH treatment. The second stage led to elimination of the diethoxylphosphoryl moiety with the aromatization of cycle.

Supporting Information



Publication History

Received: 29 April 2024

Accepted after revision: 05 June 2024

Accepted Manuscript online:
05 June 2024

Article published online:
17 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Li G, Cheng Y, Han C, Song C, Huang N, Du Y. RSC Med. Chem. 2022; 13: 1300
  • 2 Lamberth C. Heterocycles 2007; 71: 1467
    • 3a Lilley M, Mambwe B, Thompson MJ, Jackson RF, Muimo R. Chem. Commun. 2015; 51: 7305
    • 3b Kim Y, Yoon Y. Bioorg. Med. Chem. Lett. 2014; 24: 2256
    • 4a Chen W, Mao Y, Wang M, Ling F, Li C, Chen Z, Yao J. Org. Biomol. Chem. 2023; 21: 775
    • 4b Zhan S.-Z, Song H.-Q, Guo L.-J, Sun RW.-Y, Li D. Eur. J. Inorg. Chem. 2017; 5127
    • 4c Bazhin DN, Kudyakova YuS, Edilova YuO, Burgart YaV, Saloutin VI. Russ. Chem. Bull. 2022; 71: 1321
    • 4d Singh KS, Goankar RR, Banerjee K, Kaminsky W. Monatsh. Chem. 2023; 154: 905
    • 4e Yao H, Guo Q, Wang M, Wang R, Xu Z. Bioorg. Med. Chem. 2021; 46: 116344
    • 4f Sysoeva AA, Novikov AS, Il’in MV, Suslonov VV, Bolotin DS. Org. Biomol. Chem. 2021; 19: 7611
    • 4g Zhang T, Bao W. J. Org. Chem. 2013; 78: 1317
    • 4h Kim BR, Sung G H, Ryu KE, Lee S.-G, Yoon HJ, Shin D.-S, Yoon Y.-J. Chem. Commun. 2015; 51: 9201
    • 4i Wan H, Li D, Xia H, Yang L, Alhumade H, Yi H, Lei A. Chem. Commun. 2022; 58: 665
    • 5a Citarella A, Ielo L, Stagno C, Cristani M, Muscara C, Pace V, Micale N. Org. Biomol. Chem. 2022; 20: 8293
    • 5b Doma A, Kulkarni R, Palakodety R, Sastry GN, Sridhara J, Garlapati A. Bioorg. Med. Chem. 2014; 22: 6209
    • 5c Li F, Nie J, Sun L, Zheng Y, Ma J. Angew. Chem. Int. Ed. 2013; 52: 6255
    • 5d Britton J, Jamison TF. Angew. Chem. Int. Ed. 2017; 56: 8823
    • 5e Chen Z, Zheng Y, Ma J.-A. Angew. Chem. Int. Ed. 2017; 56: 4569
    • 6a Shao Y, Tong J, Zhao Y, Zheng H, Ma L, Ma M, Wan X. Org. Biomol. Chem. 2016; 14: 8486
    • 6b Slobodyanyuk EY, Artamonov OS, Shishkin O, Mykhailiuk PK. Eur. J. Org. Chem. 2014; 2487
    • 7a Xie J.-W, Wang Z, Yang W.-J, Kong L.-C, Xu D.-C. Org. Biomol. Chem. 2009; 7: 4352
    • 7b Chen Z, Zheng Y, Ma J.-A. Angew. Chem. Int. Ed. 2017; 56: 4569
    • 7c Muruganantham R, Mobin SM, Namboothiri IN. N. Org. Lett. 2007; 9: 1125
  • 8 Goulioukina NS, Makukhin NN, Shinkarev ED, Grishin YK, Roznyatovskya VA, Beletskaya IP. Org. Biomol. Chem. 2016; 14: 10000
  • 9 Beletskaya IP, Titanyuk ID. J. Org. Chem. 2022; 87: 2748
  • 10 Ye F, Wang C, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 11625
  • 11 Kosobokov MD, Titanyuk ID, Beletskaya IP. Tetrahedron Lett. 2014; 55: 6791
  • 12 Zhou Y, Zhang Y, Wang J. Org. Biomol. Chem. 2016; 14: 10444
  • 13 Huang H, Denne J, Yang C.-H, Wang H, Kang JY. Angew. Chem. Int. Ed. 2018; 57: 6624
  • 14 Portillo M, Maxwell MA, Frederich JH. Org. Lett. 2016; 18: 5142
  • 15 Shaoa N, Chen T, Zhang T, Zhu H, Zheng Q, Zou H. Tetrahedron 2014; 70: 795
  • 16 Markovic V, Joksovic MD. Green Chem. 2015; 17: 842
  • 17 Cheng B, Li Y, Li H, Zhang X, Wang T, Li Y, Zhai H. J. Org. Chem. 2020; 85: 1109