Synlett
DOI: 10.1055/a-2334-6568
synpacts

Nickel-Catalyzed Regio- and Enantioselective Hydrofluorination in Unactivated Alkenes

Minseok Kim
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
,
Seunghoon Han
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
,
Sungwoo Hong
b   Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
a   Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
› Author Affiliations
This research was supported financially by Institute for Basic Science (IBS-R010-A2).


Abstract

While enantioselective hydrofluorination methods for activated alkenes represent a notable advance, the resultant enantiomeric excesses remain largely moderate, indicating the necessity for enhancements in precision, efficiency, and scope. We have recently developed an innovative nickel hydride catalytic system that enables regio- and enantioselective C–F bond formation with unactivated alkenes. By utilizing specially designed Bn-BOx ligands for improved selectivity, our approach demonstrates exceptional efficiency and selectivity with β,γ-alkenyl amide substrates. This breakthrough enhances the synthesis of organofluorine compounds, marking a significant advancement in organic synthesis.

1 Introduction

2 Reaction Design of Hydrofluorination

3 Regio- and Enantioselective Hydrofluorination

4 Asymmetric Amplification

5 Conclusions



Publication History

Received: 05 April 2024

Accepted after revision: 28 May 2024

Accepted Manuscript online:
28 May 2024

Article published online:
13 June 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
  • 2 Zhu Y, Han J, Wang J, Shibata N, Sodeoka M, Soloshonok VA, Coelho JA. S, Toste D. Chem. Rev. 2018; 118: 3887
  • 3 He Y, Yang Z, Thornbury RT, Toste FD. J. Am. Chem. Soc. 2015; 137: 12207
  • 4 Mennie KM, Banik SM, Reichert EC, Jacobsen EN. C. J. Am. Chem. Soc. 2018; 140: 4797
  • 5 Liu J, Yuan Q, Toste FD, Sigman MS. Nat. Chem. 2019; 11: 710
  • 6 Liu Z, Oxtoby LZ, Liu M, Li Z.-Q, Tran VT, Gao Y, Engle KM. A. J. Am. Chem. Soc. 2021; 143: 8962
  • 7 Li Y, Nie W, Chang Z, Wang J.-W, Lu X, Fu Y. Nat. Catal. 2021; 4: 901
  • 8 Schäfer M, Stünkel T, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2021; 61: e202205508
  • 9 Zhu J, Tsui GC, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 12353
  • 10 Wei D, Liu T, He Y, Wei B, Pan J, Zhang J, Jiao N, Han B. Angew. Chem. Int. Ed. 2021; 60: 26308
  • 11 Duan J, Choy PY, Gan KB, Kwong FY. Org. Biomol. Chem. 2022; 20: 1883
  • 12 Yue W. -J, Martin R. Angew. Chem. Int. Ed. 2023; 62: e202310304
  • 13 Wang X, Wang C, Bolm C. Org. Lett. 2022; 24: 7461
  • 14 Yin X, Yin X, Chen B, Qiu F, Wang X, Liao Y, Wang M, Lei X, Liao J. ACS Catal. 2020; 10: 1954
  • 15 Song P, Zhu S. ACS Catal. 2020; 10: 13165
    • 16a Jeon J, Lee C, Seo H, Hong S. J. Am. Chem. Soc. 2020; 142: 20470
    • 16b Lee C, Seo H, Jeon J, Hong S. Nat. Commun. 2021; 12: 5657
    • 16c Jeon J, Lee C, Park I, Hong S. Chem. Rec. 2021;  21:  3613
    • 16d Dhungana RK, Sapkota RR, Niroula D, Giri R. Chem. Sci. 2020; 11: 9757
    • 16e Ebe Y, Onoda M, Nishimura T, Yorimitsu H. Angew. Chem. Int. Ed. 2017; 56: 5607
    • 16f Wang J.-W, Liu D.-G, Chang Z, Li Z, Fu Y, Lu X. Angew. Chem. Int. Ed. 2022; 61: e202205537
    • 16g Zhao W.-T, Meng H, Lin J.-N, Shu W. Angew. Chem. Int. Ed. 2023; 62: e202215779
    • 17a Lee C, Kang H.-J, Seo H, Hong S. J. Am. Chem. Soc. 2022; 144: 9091
    • 17b Kang H.-J, Lee C, Hong S. Angew. Chem. Int. Ed. 2023; 62: e202305042
    • 17c Lee C, Kang H.-J, Hong S. Chem. Sci. 2024;  15:  442
    • 18a Rodrigalvarez J, Wang H, Martin R. J. Am. Chem. Soc. 2023; 145: 3869
    • 18b Talavera L, Freund RR. A, Zhang H, Wakeling M, Jensen M, Martin R. ACS Catal. 2023; 13: 5538
    • 18c Yue W.-J, Martin R. ACS Catal. 2022; 12: 12132
    • 18d Davies J, Lyonnet JR, Carvalho B, Sahoo B, Day CS, Julia-Hernández F, Duan Y, Velasco-Rubio A, Obst M, Norrby P.-O, Hopmann KH, Martin R. J. Am. Chem. Soc. 2024; 146: 1753
    • 19a He S.-J, Wang J.-W, Li Y, Xu Z.-Y, Wang X.-X, Lu X, Fu Y. J. Am. Chem. Soc. 2020; 142: 214
    • 19b Wang X.-X, Lu X, He S.-J, Fu Y. Chem. Sci. 2020; 11: 7950
    • 19c Wang X.-X, Xu Y.-T, Zhang Z.-L, Lu X, Fu Y. Nat. Commun. 2022; 13: 1890
    • 20a He Y, Song H, Chen J, Zhu S. Nat. Commun. 2021; 12: 638
    • 20b Meng L, Yang J, Duan M, Wang Y, Zhu S. Angew. Chem. Int. Ed. 2021; 60: 23584
    • 20c Zhou F, Zhu S. ACS Catal. 2021; 11: 8766
    • 20d Zhang Y, Qiao D, Duan M, Wang Y, Zhu S. Nat. Commun. 2022; 13: 5630
    • 21a Qian D, Bera S, Hu X. J. Am. Chem. Soc. 2021; 143: 1959
    • 21b Bera S, Fan C, Hu X. Nat. Catal. 2022; 5: 1180
    • 21c Zhang Z, Bera S, Fan C, Hu X. J. Am. Chem. Soc. 2022; 144: 7015
    • 21d Bera S, Hu X. Angew. Chem. Int. Ed. 2019; 58: 13854
  • 22 Xi Y, Wang C, Zhang Q, Qu J, Chen Y. Angew. Chem. Int. Ed. 2021; 60: 2699
  • 23 He Y, Chen J, Jiang X, Zhu S. Chin. J. Chem. 2022; 40: 651
  • 24 Lee C, Kim M, Han S, Kim D, Hong S. J. Am. Chem. Soc. 2024; 146: 9375
  • 25 Portada T, Roje M, Hameršak Z, Žinić M. Tetrahedron Lett. 2005; 46: 5957
  • 26 Armstrong BM, Sayler RI, Shupe BH, Stich TA, Britt RD, Franz AK. ACS Catal. 2019; 9: 1224
  • 27 He Q, Pu M.-P, Jiang Z, Wang HFeng X, Liu X. J. Am. Chem. Soc. 2023; 145: 15611
  • 28 Zhu X, Li Y, Bao H. Chin. J. Chem. 2023; 41: 3097