Subscribe to RSS
DOI: 10.1055/a-2307-0567
Efficient Synthesis of N-(Difluoropropenyl)amides/Amines from Fluorinated Olefins under Base Promotion
We are grateful for the financial support from the National Natural Science Foundation of China (GZ-1645), the Key Research & Development Project in Shaanxi Province (2022GY-195, 2023-YBGY-183), the Basic Research Project of Natural Science of Shaanxi Province (2021JLM-30), and Shaanxi Provincial Department of Education Science and Technology Project (23JC035).
Abstract
N-(Difluoropropenyl)amides/amines are an important class of fluorinated compounds. Here, we report an efficient method for synthesizing these compounds without the use of transition metals. Under simple base-promoted conditions, 3-bromo-3,3-difluoroprop-1-ene reacts with N-methylanilines or N-arylacrylamides, with the elimination of one molecule of HBr, to give the target compound. Another efficient method for synthesizing difluoroalkenes is the reaction of 2-bromo-3,3,3-trifluoroprop-1-ene with indole or its analogues.
Key words
difluoropropenylamides - base catalysis - fluoroalkenes - dehydrohalogenation - transition-metal-free synthesis - indolesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2307-0567.
- Supporting Information
Publication History
Received: 22 January 2024
Accepted after revision: 15 April 2024
Accepted Manuscript online:
15 April 2024
Article published online:
08 May 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications 2004
- 1b Mikami K, Itoh Y, Yamanaka M. Chem. Rev. 2004; 104: 1
- 1c Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
- 1d Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
- 1e Begue J.-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2008
- 1f Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 1g Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Chichester: 2009
- 1h Salwiczek M, Nyakatura EK, Gerling UI. M, Ye S, Koksch B. Chem. Soc. Rev. 2012; 41: 2135
- 1i Han W.-Y, Wang J.-S, Zhao J, Long L, Cui B.-D, Wan N.-W, Chen Y.-Z. J. Org. Chem. 2018; 83: 6556
- 1j Zhao W.-W, Shao Y.-C, Wang A.-N, Huang J.-L, He C.-Y, Cui BD, Wan N.-W, Chen Y.-ZHan W.-Y. Org. Lett. 2021; 23: 9256
- 2a McDonald IA, Lacoste JM, Bey P, Palfreyman MG, Zreika M. J. Med. Chem. 1985; 28: 186
- 2b Moore WR, Schatzman GL, Jarvi ET, Gross RS, McCarthy JR. J. Am. Chem. Soc. 1992; 114: 360
- 2c Pan Y, Qiu J, Silverman RB. J. Med. Chem. 2003; 46: 5292
- 2d Weintraub PM, Holland AK, Gates CA, Moore WR, Resvick RJ, Bey P, Peet NP. Bioorg. Med. Chem. 2003; 11: 427
- 2e Altenburger J.-M, Lassalle GY, Matrougui M, Galtier D, Jetha J.-C, Bocskei Z, Berry CN, Lunven C, Lorrain J, Herault J.-P, Schaeffer P, O’Connor SE, Herbert J.-M. Bioorg. Med. Chem. 2004; 12: 1713
- 2f Rogawski MA. Epilepsy Res. 2006; 69: 273
- 3 Motherwell WB, Tozer MJ, Ross BC. J. Chem. Soc., Chem. Commun. 1989; 1437
- 4a Reynolds DW, Cassidy PE, Johnson CG, Cameron ML. J. Org. Chem. 1990; 55: 4448
- 4b Asandei AD, Adebolu OI, Simpson CP. J. Am. Chem. Soc. 2012; 134, 6080
- 4c Patil Y, Alaaeddine A, Ono T, Ameduri B. Macromolecules 2013; 46: 3092
- 5 Liu Y, Zhou Y, Zhao Y, Qu J. Org. Lett. 2017; 19: 946
- 6 Lan Y, Yang F, Wang C. ACS Catal. 2018; 8: 9245
- 7 Li Y, Sun G, He X, Lv H, Gao B. J. Fluorine Chem. 2023; 268: 110115
- 8 Xu Y, Wang S, Liu Z, Guo M, Lei A. Chem. Commun. 2023; 59: 3707
- 9 Qin T, Xu C, Zhang G, Zhang Q. Org. Chem. Front. 2023; 10: 1981
- 10 Xiong B, Chen X, Liu J, Zhang X, Xia Y, Lian Z. ACS Catal. 2021; 11: 11960
- 11 Yang Z, Pei C, Koenigs RM. Org. Lett. 2020; 22: 7234
- 12 Patra K, Reddy MK, Mallik S, Baidya M. Org. Lett. 2022; 24: 4014
- 13 Kim H, Jung Y, Cho SH. Org. Lett. 2022; 24: 2705
- 14 Zhao Y, Empel C, Liang W, Koenigs RM, Patureau FW. Org. Lett. 2022; 24: 8753
- 15 Yang Z, Möller M, Koenigs RM. Angew. Chem. Int. Ed. 2020; 59: 5572
- 16 Aelterman M, Biremond T, Jubault P, Poisson T. Chem. Eur. J. 2022; 28: e202202194
- 17 Cai S.-H, Ye L, Wang D.-X, Wang Y.-Q, Lai L.-J, Zhu C, Feng C, Loh T.-P. Chem. Commun. 2017; 53: 8731
- 18 Lin Z, Lan Y, Wang C. ACS Catal. 2019; 9: 775
- 19 Ni Y.-Q, Li D.-J, Mei Y, Jiang Y, Zhang J.-L, He K.-H, Pan F. Org. Lett. 2023; 25: 6784
- 20 Akiyama S, Nomura S, Kubota K, Ito H. J. Org. Chem. 2020; 85: 4172
- 21 Tang W, Fan P. Org. Lett. 2023; 25: 5756
- 22 Li Y, Hao M, Xia M, Sun N, Zhang C.-L, Zhu W.-Q. React. Chem. Eng. 2020; 5: 961
- 23 Li Y, Hao M, Chang Y.-C, Liu Y, Wang W.-F, Sun N, Zhu W.-QGao Z. Chin. J. Chem. 2021; 39: 2962
- 24 Li Y, Sun N, Zhang C.-L, Hao M. Chin. J. Chem. 2021; 39: 1477
- 25 Li Y, Zhang C.-L, Huang W.-H, Sun N, Hao M, Neumann H, Beller M. Chem. Sci. 2021; 12: 10467
- 26 Li Y, Sun N, Hao M, Zhang C.-L, Li H, Zhu W.-Q. Catal. Lett. 2021; 151: 764
- 27 Wen X.-R, Zhu W.-Q, Zhang C.-L, Li H, Zhang J, Yang M.-G, Kou Y.-L, Liu Y.-X, Li Y. ACS Omega 2023; 8: 7128
- 28 Li Y, Shi L.-T, Zhu W.-Q, Li H, Zhang Q. Synlett 2018; 29: 1847
- 29 CCDC 2323785 contains the supplementary crystallographic data for compound 7e. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 30 N-(3,3-Difluoroprop-2-en-1-yl)-N-(4-methoxyphenyl)acrylamide; Typical Procedure A 35.0 mL glass reaction tube was charged with N-(4-methoxyphenyl)acrylamide (1a; 1.0 mmol), 3-bromo-3,3-difluoropropene (2; 2.0 mmol) t-BuOK (2.0 mmol), and MeCN (2.0 mL), and the tube was placed in an autoclave. The autoclave was sealed, purged three times with N2, and heated in an oil bath at 100 °C for 8 h. The autoclave was then cooled to r.t. and the crude product was purified by column chromatography [silica gel, PE–EtOAc (30:1 to 10:1)] to give a yellow liquid; yield: 39.2 mg (55%). 1H NMR (400 MHz, CDCl3): δ = 7.05–6.70 (m, 4 H), 6.28 (d, J = 16.8 Hz, 1 H), 6.02–5.80 (m, 1 H), 5.44 (d, J = 10.3 Hz, 1 H), 4.48–4.30 (m, 1 H), 4.25 (d, J = 7.9 Hz, 2 H), 3.76 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 165.7, 159.2, 157.7 (t, J = 289.0 Hz), 133.9, 129.2, 128.4, 127.8, 114.8, 74.9 (dd, J = 18.8, 23.2 Hz), 55.5, 42.7 (d, J = 7.4 Hz). 19F NMR (376 MHz, CDCl3): δ = –85.75 (d, J = 38.09 Hz, 1 F), –88.17 (dd, J = 24.52, 37.41 Hz). HRMS (ESI): m/z [M + Na]+ calcd for C13H13F2NNaO2: 276.0812; found: 276.0810.