Frauenheilkunde up2date 2024; 18(02): 165-181
DOI: 10.1055/a-2244-2412
Interdisziplinäre Themen

Atmung und Schlafregulation beim Neugeborenen

Mirja Quante
,
Christian Poets
,
Axel Hübler

Der plötzliche Säuglingstod (sudden infant death syndrome; SIDS) ist keine schlafmedizinische Erkrankung im eigentlichen Sinne, da im Nachhinein nicht ermittelt werden kann, ob die Kinder wirklich aus dem Schlaf heraus gestorben sind. Der Beitrag geht weiterhin auf Apnoen, Obstruktionen, Fehlbildungen sowie die Schlafumgebung ein.

Kernaussagen
  • SIDS (sudden infant death syndrome) ist definiert als der plötzliche Tod eines Säuglings oder Kleinkinds, der unerwartet eintritt und bei dem eine sorgfältige postmortale Untersuchung keine adäquate Todesursache erkennen lässt.

  • SIDS ist die zweithäufigste Todesursache jenseits der Neonatalperiode.

  • Nach einem plötzlichen und unerwarteten Säuglingstod muss zwingend eine Obduktion durchgeführt werden, da es sich beim SIDS immer um eine Ausschlussdiagnose handelt.

  • Die AWMF-Leitlinie „Prävention des Plötzlichen Säuglingstods“ wurde 2022 aktualisiert und nennt u.a. Risiko- und Schutzfaktoren. Letztlich darf die Prävention jedoch den postnatalen Bindungsaufbau zwischen Mutter und Kind sowie den späteren Stillerfolg nicht behindern.

  • Das klinische Management in Bezug auf die Therapiedauer und die Nachsorge von Patienten mit schlafbezogenen Erkrankungen in den ersten Lebenswochen und -monaten durch z.B. Heimmonitoring ist aufgrund der unzureichenden Datenlage derzeit heterogen.

  • Als Medikament der Wahl zur Behandlung der Apnoe-Bradykardie-Hypoxämie-Symptomatik gilt Koffeinzitrat. Jedoch ist die Datenlage zur Dauer der Anwendung von Koffeinzitrat sowie zur Nachsorge für betroffene Patienten noch unsicher.

  • Liegen Fehlbildungen im Bereich der oberen Atemwege vor, erfolgt meist zunächst die kieferorthopädische Versorgung mit einer Gaumenplatte.

  • Patienten mit Mikrognathie sollten aufgrund des häufigen Auftretens höhergradiger Atemwegsobstruktionen bei pränatalen Auffälligkeiten bereits für die Entbindung in ein entsprechendes Zentrum überwiesen werden.

  • Zur Gewährleistung der Schlafhygiene im Rahmen der neonatologischen Intensivtherapie sollte sowohl das kindliche Verhalten beachtet als auch die Umgebungsbedingungen an die kindlichen Bedürfnisse angepasst werden.



Publication History

Article published online:
28 March 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Beckwith JB. Discussion of terminology and definition of the sudden infant death syndrome. In: Bergman AB, Beckwith JB, Ray CG. Sudden infant death syndrome. Proceedings of the Second International Conference of the causes of the sudden death in infants. Washington: University of Washington Press; 1970: 14-22
  • 2 Krous HF, Beckwith B, Byard RW. et al. Sudden infant death syndrome and unclassified sudden infant deaths: A definitional and diagnostic approach. Pediatrics 2004; 114: 234-238
  • 3 de Visme S, Chalumeau M, Levieux K. et al. National variations in recent trends of sudden unexpected infant death rate in Western Eur. J Pediatr 2020; 226: 179-185
  • 4 Gesundheitsberichterstattung des Bundes. Accessed September 15, 2023 at: https://www.gbe-bund.de
  • 5 Poets A, Steinfeldt R, Poets CF. Sudden deaths and severe apparent life-threatening events in term infants within 24 hours of birth. Pediatrics 2011; 127: e869-e873
  • 6 Poets A, Urschitz MS, Steinfeldt R. et al. Risk factors for early sudden deaths and severe apparent life-threatening events. Arch Dis Child Fetal Neonatal Ed 2012; 97: F395-F397
  • 7 Madar J, Roehr CC, Ainsworth S. et al. Versorgung und Reanimation des Neugeborenen nach der Geburt. Notf Rettungsmed 2021; 24: 603-649
  • 8 Kurz R, Kerbl R. SIDS-Definitionen und Klassifikationen. et al. In: Kurz R, Kenner T, Poets C. Der plötzliche Säuglingstod. Wien: Springer; 2014: 23-26
  • 9 Simma A, Potapow A, Brandstetter S. et al. Electrocardiographic screening in the first days of life for diagnosing long QT syndrome: Findings from a birth cohort study in Germany. Neonatology 2020; 117: 756-763
  • 10 Kahn A, Groswasser J, Rebuffat E. et al. Sleep and cardiorespiratory characteristics of infant victims of sudden death: A prospective case-control study. Sleep 1992; 15: 287-292
  • 11 Schechtman VL, Harper RM, Kluge KA. et al. Cardiac and respiratory patterns in normal infants and victims of the sudden infant death syndrome. Sleep 1988; 11: 413-424
  • 12 Kato I, Franco P, Groswasser J. et al. Incomplete arousal processes in infants who were victims of sudden death. Am J Respir Crit Care Med 2003; 168: 1298-1303
  • 13 Kenner T, Zotter H. Schlaf, autonome Regulation und Arousals. et al. In: Kurz R, Kenner T, Poets C. Der plötzliche Säuglingstod. Wien: Springer; 2014: 135-154
  • 14 Poets C, Kurz R, Kerbl R. et al. Möglichkeiten und Ergebnisse der Prävention. et al. In: Kurz R, Kenner T, Poets C. Der plötzliche Säuglingstod. Wien: Springer; 2014: 171-192
  • 15 Poets CFP, Erler T, Hübler A. et al. Prävention des plötzlichen Säuglingstods (SIDS, „sudden infant death syndrome“, ICD-10: R95) S1-Leitlinie, AWMF Nr. 063–002. Monatsschr Kinderheilkd 2023; 171: 452-456
  • 16 Pease AS, Fleming PJ, Hauck FR. et al. Swaddling and the risk of sudden infant death syndrome: A meta-analysis. Pediatrics 2016; 137: e20153275
  • 17 Bartick M, Boisvert ME, Philipp BL. et al. Trends in breastfeeding interventions, skin-to-skin care, and sudden infant death in the first 6 days after birth. J Pediatr 2020; 218: 11-15
  • 18 Canty EA, Fogel BN, Batra EK. et al. Improving infant sleep safety via electronic health record communication: A randomized controlled trial. BMC Pediatr 2020; 20: 468
  • 19 Pretorius K, Choi E, Kang S. et al. Sudden infant death syndrome on Facebook: Qualitative descriptive content analysis to guide prevention efforts. J Med Internet Res 2020; 22: e18474
  • 20 Tieder JS, Bonkowsky JL, Etzel RA. et al. Brief resolved unexplained events (formerly apparent life-threatening events) and evaluation of lower-risk infants. Pediatrics 2016; 137: e20160590
  • 21 Brand DA, Fazzari MJ. Risk of death in infants who have experienced a brief resolved unexplained event: A meta-analysis. J Pediatr 2018; 197: 63-67
  • 22 Wennergren G, Milerad J, Lagercrantz H. et al. The epidemiology of sudden infant death syndrome and attacks of lifelessness in Sweden. Acta Paediatr Scand 1987; 76: 898-906
  • 23 Erler T, Beyer U, Hoch B. et al. Heimüberwachung („home monitoring“) von Kindern und Jugendlichen: Vorschläge für die praktische Anwendung. Somnologie 2009; 13: 182-188
  • 24 Kenzian H, Kerbl R, Burger J. et al. Plötzlicher Säuglingstod in Österreich. Richtlinien zur Diagnostik und Prävention (Konsensuspapier). Monatsschr Kinderheilkd 2007; 155: 464-465
  • 25 Poets C. Möglichkeiten und Ergebnisse der Prävention. et al. In: Kurz R, Kenner T, Poets C. Der plötzliche Säuglingstod. Wien: Springer; 2014: 171-215
  • 26 Elder DE, Whale J, Galletly D. et al. Respiratory events in preterm infants prior to discharge: With and without clinically concerning apnoea. Sleep Breath 2011; 15: 867-873
  • 27 Poets CF, Bohnhorst B, Kerst G. Therapie idiopathischer Apnoen, Bradykardien und Hypoxämien bei Frühgeborenen. AWMF Nr. 024/013(GNPI). 2020
  • 28 Poets CF, Roberts RS, Schmidt BS. et al. Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants. JAMA 2015; 314: 595-603
  • 29 Vatlach S, Arand J, Engel C. et al. Safety profile comparison between extemporaneous and a licensed preparation of caffeine citrate in preterm infants with apnea of prematurity. Neonatology 2013; 105: 108-111
  • 30 Rebentisch A, Kovey K, Denslow S. An evaluation of twice-daily dosing of caffeine for apnea of prematurity. J Pediatr Pharmacol Ther 2021; 26: 253-257
  • 31 Schmidt B, Roberts RS, Davis P. et al. Caffeine therapy for apnea of prematurity. N Engl J Med 2006; 354: 2112-2121
  • 32 Schmidt B, Anderson PJ, Doyle LW. et al. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA 2012; 307: 275-282
  • 33 Schmidt B, Roberts RS, Davis P. et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med 2007; 357: 1893-1902
  • 34 Barrington KJ, Roberts RS, Schmidt B. et al. The Caffeine for Apnea of Prematurity (CAP) Trial, Analyses of Dose Effect. In: PAS 2010. 2010, Abstract-CD 2010.
  • 35 McPherson C, Neil JJ, Tjoeng TH. et al. A pilot randomized trial of high-dose caffeine therapy in preterm infants. Pediatr Res 2015; 78: 198-204
  • 36 Poets CF. Atemregulation beim Neugeborenen. In: Hübler A, Jorch G. Neonatologie – Die Medizin des Früh- und Reifgeborenen. Stuttgart: Thieme; 2019: 228-233
  • 37 Spitzer AR. Evidence-based methylxanthine use in the NICU. Clin Perinatol 2012; 39: 137-148
  • 38 Dukhovny D, Lorch SA, Schmidt B. et al. Economic evaluation of caffeine for apnea of prematurity. Pediatrics 2011; 127: e146-e155
  • 39 Supcun S, Kutz P, Pielemeier W. et al. Caffeine increases cerebral cortical activity in preterm infants. J Pediatr 2010; 156: 490-491
  • 40 Rivkees SA, Wendler CC. Adverse and protective influences of adenosine on the newborn and embryo: Implications for preterm white matter injury and embryo protection. Pediatr Res 2011; 69: 271-278
  • 41 Tanaka K, Ishitsuka Y, Kurauchi Y. et al. Comparative effects of respiratory stimulants on hypoxic neuronal cell injury in SH-SY5Y cells and in hippocampal slice cultures from rat pups. Pediatr Int 2013; 55: 320-327
  • 42 Kumral A, Tuzun F, Yesilirmak DC. et al. Genetic basis of apnoea of prematurity and caffeine treatment response. Role of adenosine receptor polymorphisms: Genetic basis of apnoea of prematurity. Acta Paediatr 2012; 101: e299-e303
  • 43 Clyman RI, Roman C. The effects of caffeine on the preterm sheep ductus arteriosus. Pediatr Res 2007; 62: 167-169
  • 44 Anderson BJ, Gunn TR, Holford NH. et al. Caffeine overdose in a premature infant: Clinical course and pharmacokinetics. Anaesth Intens Care 1999; 27: 307-311
  • 45 Ergenekon E, Dalgic N, Aksoy E. et al. Caffeine intoxication in a premature neonate. Paediatr Anaesth 2001; 11: 737-739
  • 46 Schoen K, Yu T, Stockmann C. et al. Use of methylxanthine therapies for the treatment and prevention of apnea of prematurity. Paediatr Drugs 2014; 16: 169-177
  • 47 Aranda JV, Grondin D, Sasyniuk BI. Pharmacologic considerations in the therapy of neonatal apnea. Pediatr Clin North Am 1981; 28: 113-133
  • 48 Natarajan G, Botica M-L, Thomas R. et al. Therapeutic drug monitoring for caffeine in preterm neonates: An unnecessary exercise?. Pediatrics 2007; 119: 936-940
  • 49 Henderson-Smart DJ, De Paoli AG. Methylxanthine treatment for apnoea in preterm infants. Coch Data Syst Rev 2010; 12: CD000140
  • 50 Henderson-Smart DJ, Steer PA. Caffeine versus theophylline for apnea in preterm infants. Coch Data Syst Rev 2010; 1: CD000273
  • 51 Martin RJ, Abu-Shaweesh JM. Control of breathing and neonatal apnea. Biol Neonate 2005; 87: 288-295
  • 52 Gannon BA. Theophylline or caffeine: Which is best for apnea of prematurity?. Neonatal Netw 2000; 19: 33-36
  • 53 Aiba T, Shimizu W, Inagaki M. et al. Cellular and ionic mechanism for drug-induced long QT syndrome and effectiveness of verapamil. J Am Coll Cardiol 2005; 45: 300-307
  • 54 Batchvarov VN, Ghuran A, Smetana P. et al. QT-RR relationship in healthy subjects exhibits substantial intersubject variability and high intrasubject stability. Am J Physiol Heart Circ Physiol 2002; 282: H2356-H2363
  • 55 Drici MD, Barhanin J. Cardiac K+ channels and drug-acquired long QT syndrome. Therapie 2000; 55: 185-193
  • 56 Miyata M, Hata T, Kato N. et al. Dynamic QT/RR relationship of cardiac conduction in premature infants treated with low-dose doxapram hydrochloride. J Perinat Med 2007; 35: 330-333
  • 57 Alvaro R, Alvarez J, Kwiatkowski K. et al. Small preterm infants (less than or equal to 1500 g) have only a sustained decrease in ventilation in response to hypoxia. Pediatr Res 1992; 32: 403-406
  • 58 Yost CS. A new look at the respiratory stimulant doxapram. CNS Drug Rev 2006; 12: 236-249
  • 59 Dani C, Bertini G, Pezzati M. et al. Brain hemodynamic effects of doxapram in preterm infants. Biol Neonate 2006; 89: 69-74
  • 60 Poets CF, Darraj S, Bohnhorst B. Effect of doxapram on episodes of apnoea, bradycardia and hypoxaemia in preterm infants. Biol Neonate 1999; 76: 207-213
  • 61 Sreenan C, Etches PC, Demianczuk N. et al. Isolated mental developmental delay in very low birth weight infants: Association with prolonged doxapram therapy for apnea. J Pediatr 2001; 139: 832-837
  • 62 Ten Hove CH, Vliegenthart RJ, Te Pas AB. et al. Long-term neurodevelopmental outcome after doxapram for apnea of prematurity. Neonatology 2016; 110: 21-26
  • 63 Fischer C, Ferdynus C, Gouyon J-B. et al. Doxapram and hypokalaemia in very preterm infants. Arch Dis Child Fetal Neonatal Ed 2013; 98: F416-F418
  • 64 Mathew OP. Apnea of prematurity: Pathogenesis and management strategies. J Perinatol 2011; 31: 302-310
  • 65 Bacos J, Maduekwe U, Janes L. et al. Novel approach of mandibular distraction to avoid tracheostomy in KAT6B-related gene disorders. J Craniofac Surg 2020; 31: 2294-2296
  • 66 Urschitz MS, Poets CF, Stuck BA. et al. Schnarchen bei Kindern. Monatsschr Kinderheilkd 2013; 161: 347-350
  • 67 Buchenau W, Urschitz MS, Sautermeister J. et al. A randomized clinical trial of a new orthodontic appliance to improve upper airway obstruction in infants with Pierre Robin sequence. J Pediatr 2007; 151: 145-149
  • 68 Wiechers C, Arand J, Koos B. et al. Evidence and practical aspects of treatment with the Tubingen palatal plate. Semin Fetal Neonatal Med 2021; 26: 101281
  • 69 Shahi N. et al. Outcomes of airway management in micrognathia and retrognathia patients born at fetal versus nonfetal centers. Fetal Diagn Ther 2020; 47: 933-938
  • 70 Czechowicz JA, Benjamin T, Bly RA. et al. Airway hemangiomas in PHACE syndrome: A multicenter experience. Otolaryngol Head Neck Surg 2021; 165: 182-186
  • 71 Leonardis RL, Robison JG, Otteson TD. Evaluating the management of obstructive sleep apnea in neonates and infants. JAMA Otolaryngol Head Neck Surg 2013; 139: 139-146
  • 72 Karkoutli AA, Brumund MR, Evans AK. Bronchopulmonary dysplasia requiring tracheostomy: A review of management and outcomes. Int J Pediatr Otorhinolaryngol 2020; 139: 110449
  • 73 Akangire G, Taylor JB, McAnany S. et al. Respiratory, growth, and survival outcomes of infants with tracheostomy and ventilator dependence. Pediatr Res 2021; 90: 381-389
  • 74 Hübler A. Wahrnehmung. In: Jorch G. Fetoneonatale Neurologie. Stuttgart: Thieme; 2013: 60-70
  • 75 Brandon DH, Holditch-Davis D, Belyea M. Preterm infants born at less than 31 weeks' gestation have improved growth in cycled light compared with continuous near darkness. J Pediatr 2002; 140: 192-199
  • 76 Rivkees SA. Developing circadian rhythmicity in infants. Pediatrics 2003; 112: 373-381
  • 77 Tiffany M. Stimulation of preterm infants. Pediatrics Rev 2003; 24: 4-11
  • 78 Aucott S, Donohue PK, Atkins E. et al. Neurodevelopmental care in the NICU. Ment Retard Dev Disabil Res Rev 2002; 8: 298-308
  • 79 Craig KD, Korol CT, Pillai RR. Challenges of judging pain in vulnerable infants. Clin Perinatol 2002; 29: 445-457
  • 80 Modrcin-McCarthy MA, McCue S, Walker J. Preterm infants and STRESS: A tool for the neonatal nurse. J Perinat Neonatal Nurs 1997; 10: 62-71
  • 81 Guyer C, Huber R, Fontijn J. et al. Very preterm infants show earlier emergence of 24-hour sleep-wake rhythms compared to term infants. Early Hum Dev 2015; 91: 37-42
  • 82 Vasquez-Ruiz S, Maya-Barrios JA, Torres-Narváez P. et al. A light/dark cycle in the NICU accelerates body weight gain and shortens time to discharge in preterm infants. Early Hum Dev 2014; 90: 535-540
  • 83 Wang D, Aubertin C, Barrowman N. et al. Examining the effects of a targeted noise reduction program in a neonatal intensive care unit. Arch Dis Child Fetal Neonatal Ed 2014; 99: F203-F208
  • 84 Lyngstad LT, Tandberg BS, Storm H. et al. Does skin-to-skin contact reduce stress during diaper change in preterm infants?. Early Hum Dev 2014; 90: 169-172
  • 85 Bauer K, Uhrig C, Sperling P. et al. Body temperatures and oxygen consumption during skin-to-skin (kangaroo) care in stable preterm infants weighing less than 1500 grams. J Pediatr 1997; 130: 240-244
  • 86 Strand H, Blomqvist YT, Gradin M. et al. Kangaroo mother care in the neonatal intensive care unit: Staff attitudes and beliefs and opportunities for parents. Acta Paediatr 2014; 103: 373-378
  • 87 Boundy EO, Dastjerdi R, Spiegelman D. et al. Kangaroo mother care and neonatal outcomes: A meta-analysis. Pediatrics 2016; 137: e20152238
  • 88 Chen WY, Wu Y-Y, Xu M-Y. et al. Effect of kangaroo mother care on the psychological stress response and sleep quality of mothers with premature infants in the neonatal intensive care unit. Front Pediatr 2022; 10: 879956
  • 89 Franco P, Scaillet S, Wermenbol V. et al. The influence of a pacifier on infants' arousals from sleep. J Pediatr 2000; 136: 775-779