Synlett
DOI: 10.1055/a-2214-5299
letter
Japan/Netherlands Gratama Workshop

Rhodium-Catalyzed Direct Vinylene Annulation of 2-Aryloxazolines and Cascade Ring-Opening Using a Vinyl Selenone

Junya Kitano
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
,
Yuji Nishii
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
b   Center for Future Innovation, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
,
a   Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
c   Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
,
c   Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
› Institutsangaben
This research was supported by a Grant-in-Aid for Scientific Research from JSPS (Specially Promoted Research, Grant No. JP 17H06092).


Abstract

Over the past two decades, transition-metal-catalyzed C–H activation and the subsequent oxidative cyclization with alkynes or their surrogates has emerged as a powerful synthetic tool for fused heteroaromatics. We report a Rh(III)-catalyzed annulation and ring-opening cascade reaction with 2-aryloxazolines. By utilizing a vinyl selenone as an oxidizing acetylene surrogate, the target three-component coupling products were obtained in high yields without using a stoichiometric amount of external oxidant.

Supporting Information



Publikationsverlauf

Eingereicht: 25. Oktober 2023

Angenommen nach Revision: 20. November 2023

Accepted Manuscript online:
20. November 2023

Artikel online veröffentlicht:
14. Dezember 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Tilvi S, Singh KS. Curr. Org. Chem. 2016; 20: 898

    • For selected reviews, see:
    • 2a Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 2b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 2c Kuhl N, Schröder N, Glorius F. Adv. Synth. Catal. 2014; 356: 1443
    • 2d Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894
    • 2e Gulías M, Mascareñas JL. Angew. Chem. Int. Ed. 2016; 55: 11000
    • 2f Yang Y, Li K, Cheng Y, Wan D, Li M, You J. Chem. Commun. 2016; 52: 2872
    • 2g Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
    • 2h Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 2i Vásquez-Céspedes S, Wang X, Glorius F. ACS Catal. 2018; 8: 242
    • 2j Santhoshkumar R, Cheng C.-H. Chem. Eur. J. 2019; 25: 9366
    • 2k Kuang G, Liu G, Zhang X, Lu N, Peng Y, Xiao Q, Zhou Y. Synthesis 2020; 52: 993
    • 2l Nishii Y, Miura M. ACS Catal. 2020; 10: 9747
    • 2m Nishii Y, Miura M. ACS Catal. 2020; 10: 9747
    • 2n Dhawa U, Kaplaneris N, Ackermann L. Org. Chem. Front. 2021; 8: 4886
  • 3 Connon R, Roche B, Rokade BV, Guiry PJ. Chem. Rev. 2021; 121: 6373
  • 4 Glassner M, Vergaelen M, Hoogenboom R. Polym. Int. 2018; 67: 32

    • For selected recent reviews, see:
    • 5a Li C, Wang L.-X. Chem. Rev. 2018; 118: 8359
    • 5b Fairbanks AJ. Beilstein J. Org. Chem. 2018; 14: 416
  • 6 Gschwend HW, Hamdan A. J. Org. Chem. 1975; 40: 2008

    • For selected recent examples, see:
    • 7a Gong T.-J, Xiao B, Cheng W.-M, Su W, Xu J, Liu Z.-J, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 10630
    • 7b Seki M. ACS Catal. 2014; 4: 4047
    • 7c Mei R, Loup J, Ackermann L. ACS Catal. 2016; 6: 793
    • 7d Kim H, Park G, Park J, Chang S. ACS Catal. 2016; 6: 5922
    • 7e Hermann GN, Bolm C. ACS Catal. 2017; 7: 4592
    • 7f Li Y.-G, Wang Z.-Y, Zou Y.-L, So C.-M, Kwong F.-Y, Qin H.-L, Kantchev EA. B. Synlett 2017; 28: 499
    • 7g Liu S, Zhang S, Lin Q, Huang Y, Li B. Org. Lett. 2019; 21: 1134
    • 7h Zhou C, Zhao J, Guo W, Jiang J, Wang J. Org. Lett. 2019; 21: 9315
    • 7i Gou X.-Y, Li Y, Wang X.-G, Liu H.-C, Zhang B.-S, Zhao J.-H, Zhou Z.-Z, Liang Y.-M. Chem. Commun. 2019; 55: 5487
  • 8 Luo C.-Z, Gandeepan P, Jayakumar J, Parthasarathy K, Chang Y.-W, Cheng C.-H. Chem. Eur. J. 2013; 19: 14181
  • 9 Yang Z, Jie L, Yao Z, Yang Z, Cui X. Adv. Synth. Catal. 2019; 361: 214
    • 10a Zhang X, Wang P, Zhu L, Chen B. Chin. Chem. Lett. 2021; 32: 695
    • 10b Yang Z, Liu J, Li Y, Ding J, Zheng L, Liu Z.-Q. J. Org. Chem. 2022; 87: 14809
    • 10c Yue X, Gao Y, Huang J, Feng Y, Cui X. Org. Lett. 2023; 25: 2923
    • 11a Ghosh K, Nishii Y, Miura M. ACS Catal. 2019; 9: 11455
    • 11b Ghosh K, Nishii Y, Miura M. Org. Lett. 2020; 22: 3547
    • 11c Mihara G, Ghosh K, Nishii Y, Miura M. Org. Lett. 2020; 22: 5706
    • 11d Kitano J, Nishii Y, Miura M. Org. Lett. 2022; 24: 5679
    • 11e Inami A, Nishii Y, Hirano K, Miura M. Org. Lett. 2023; 25: 3206

      For related examples, see:
    • 12a Li X, Huang T, Song Y, Qi Y, Li L, Li Y, Xiao Q, Zhang Y. Org. Lett. 2020; 22: 5925
    • 12b Hu Y, Nan J, Yin J, Huang G, Ren X, Ma Y. Org. Lett. 2021; 23: 8527
    • 12c Nan J, Yin J, Gong X, Hu Y, Ma Y. Org. Lett. 2021; 23: 8910
    • 12d Li Y, Wang H, Li Y, Li Y, Sun Y, Xia C, Li Y. J. Org. Chem. 2021; 86: 18204
    • 12e Kim S, Choi SB, Kang JY, An W, Lee SH, Oh H, Ghosh P, Mishra NK, Kim IS. Asian J. Org. Chem. 2021; 10: 3005
    • 12f Huang X, Xu Y, Li J, Lai R, Luo Y, Wang Q, Yang Z, Wu Y. Chin. Chem. Lett. 2021; 32: 3518
    • 12g Yu Y, Wang Y, Li B, Tan Y, Zhao H, Li Z, Zhang C, Ma W. Adv. Synth. Catal. 2022; 364: 838
    • 12h Liu M, Yan K, Wen J, Liu W, Wang M, Wang L, Wang X. Adv. Synth. Catal. 2022; 364: 512
    • 13a Palomba M, Coelho Dias IF, Rosati O, Marini F. Molecules 2021; 26: 3148
    • 13b Buyck T, Wang Q, Zhu J. J. Am. Chem. Soc. 2014; 136: 11524
  • 14 CCDC 2302556 contains the supplementary crystallographic data for compound 3aa. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 15 Isoquinolinones 3aala; General Procedure An oven-dried 10 mL screw-top tube was charged with the appropriate oxazoline 1 (0.2 mmol), phenyl vinyl selenone (2a; 64.5 mg, 0.3 mmol), [Cp*Rh(MeCN3)][SbF6]2 (1.7 mg, 1.0 mol%), and the appropriate nucleophile (1.0 mmol). The tube was filled with N2, and CHCl3 (2.0 mL) was added from a syringe. The mixture was heated in an oil bath at 100 °C for 18 h. The resulting suspension was filtered through a pad of Celite, eluting with CHCl3. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (silica gel) and, if indicated, gel-permeation chromatography. 2-(1-Oxoisoquinolin-2(1H)-yl)ethyl Pivalate (3aa) Purified by column chromatography [silica gel, hexane–EtOAc (2:1)] as a yellow solid; yield: 33.2 mg (61%); mp 108.3–110.3 °C. 1H NMR (400 MHz, CDCl3): δ = 8.43 (dt, J = 0.6, 8.0 Hz, 1 H), 7.67–7.62 (m, 1 H), 7.53–7.47 (m, 2 H), 7.05 (d, J = 7.4 Hz, 1 H), 6.48 (d, J = 7.3 Hz, 1 H), 4.42 (t, J = 5.3 Hz, 2 H), 4.27 (t, J = 5.3 Hz, 2 H), 1.17 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 178.2, 162.2, 137.1, 132.4, 132.3, 127.8, 126.9, 126.2, 125.9, 105.7, 62.3, 48.4, 38.8, 27.2. HRMS (APCI): m/z [M + H]+ calcd for C16H20NO3: 274.1438; found: 274.1434.
    • 16a Bagnoli L, Casini S, Marini F, Santi C, Testaferri T. Tetrahedron 2013; 69: 481
    • 16b Buyck T, Pasche D, Wang Q, Zhu J. Chem. Eur. J. 2016; 22: 2278
    • 16c Abenante L, Padilha NB, Anghinoni JM, Penteado F, Rosati O, Santi C, Silva MS, Lenardão EJ. Org. Biomol. Chem. 2020; 18: 5210