Synlett 2024; 35(09): 997-1000
DOI: 10.1055/a-2210-0973
cluster
Chemical Synthesis and Catalysis in Germany

Enantioselective (3+2)-Annulation of β-Keto Esters with Azoalkenes towards Bicyclic Dihydropyrroles via Cooperative Palladium and Brønsted Acid Catalysis

Till Friedmann
,
Daniel A. Mireles-Chávez
,
,
Financial support of this work through the Deutsche Forschungsgemeinschaft (DFG) (SCHN 441/14-1) is gratefully acknowledged.


Abstract

A cooperative catalytic process through palladium and Brønsted acid activation is developed for the conjugate addition of cyclic β-keto esters to azoalkenes directly followed by hemiaminal formation upon cyclization. This transformation is enabled by utilizing chiral Pd-aqua complexes as combined Brønsted acid–base catalysts. Thus, bicyclic and highly functionalized dihydropyrroles with two contiguous quaternary stereogenic centers are formed in excellent yields as single diastereomers and with exceptional enantioselectivity.

Supporting Information



Publication History

Received: 05 October 2023

Accepted after revision: 13 November 2023

Accepted Manuscript online:
13 November 2023

Article published online:
14 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Attanasi O, Bonifazi P, Foresti E, Pradella G. J. Org. Chem. 1982; 47: 684
    • 1b Attanasi O, de Crescentini L, Filippone P, Mantellini F, Perrulli F, Santeusanio S. Synlett 2006; 1734
    • 1c Attanasi OA, de Crescentini L, Favi G, Filippone P, Mantellini F, Perrulli FR, Santeusanio S. Eur. J. Org. Chem. 2009; 3109
    • 1d Attanasi OA, Favi G, Filippone P, Perrulli FR, Santeusanio S. Org. Lett. 2009; 11: 309
    • 2a Gao S, Chen J.-R, Hu X.-Q, Cheng H.-G, Lu L.-Q, Xiao W.-J. Adv. Synth. Catal. 2013; 355: 3539
    • 2b Guo C, Sahoo B, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2014; 136: 17402
    • 2c Huang R, Chang X, Li J, Wang C.-J. J. Am. Chem. Soc. 2016; 138: 3998
    • 2d Wei L, Wang C.-J. Chem. Commun. 2015; 51: 15374
    • 3a Tong M.-C, Chen X, Li J, Huang R, Tao H, Wang C.-J. Angew. Chem. Int. Ed. 2014; 53: 4680
    • 3b Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
    • 3c Chen J.-R, Dong W.-R, Candy M, Pan F.-F, Jörres M, Bolm C. J. Am. Chem. Soc. 2012; 134: 6924
    • 4a Mei G.-J, Tang X, Tasdan Y, Lu Y. Angew. Chem. Int. Ed. 2020; 59: 648
    • 4b Ran G.-Y, Gong M, Yue J.-F, Yang X.-X, Zhou S.-L, Du W, Chen Y.-C. Org. Lett. 2017; 19: 1874
    • 5a Gao X, Han T.-J, Li B.-B, Hou X.-X, Hua Y.-Z, Jia S.-K, Xiao X, Wang M.-C, Wei D, Mei G.-J. Nat. Commun. 2023; 14: 5189
    • 5b Han T.-J, Zhang Z.-X, Wang M.-C, Xu L.-P, Mei G.-J. Angew. Chem. Int. Ed. 2022; 61: e202207517
  • 6 Chen Y.-X, Han T.-J, Xiao X, Wang M.-C, Mei G.-J. Chem. Commun. 2023; 59: 8103
    • 7a Göricke F, Schneider C. Angew. Chem. Int. Ed. 2018; 57: 14736
    • 7b Göricke F, Schneider C. Org. Lett. 2020; 22: 6101
    • 8a Loui HJ, Schneider C. Org. Lett. 2022; 24: 1496
    • 8b Gärtner CV, Schneider C. Org. Lett. 2022; 24: 3560
    • 8c For a recent review, see: Gärtner CV, Schneider C. ChemCatChem 2023; 15: e202300343
  • 9 Gärtner CV, Schneider C. Org. Lett. 2023; 25: 416
    • 10a Sodeoka M, Hamashima Y. Pure Appl. Chem. 2006; 78: 477
    • 10b Hagiwara E, Fujii A, Sodeoka M. J. Am. Chem. Soc. 1998; 120: 2474
    • 10c Hamashima Y, Hotta D, Sodeoka M. J. Am. Chem. Soc. 2002; 124: 11240
    • 10d Hamashima Y, Yagi K, Takano H, Tamás L, Sodeoka M. J. Am. Chem. Soc. 2002; 124: 14530
    • 10e Umebayashi N, Hamashima Y, Hashizume D, Sodeoka M. Angew. Chem. Int. Ed. 2008; 47: 4196
  • 11 For a review on early developments, see: Sodeoka M, Hamashima Y. Chem. Commun. 2009; 5787
  • 12 Hamashima Y, Sasamoto N, Hotta D, Somei H, Umebayashi N, Sodeoka M. Angew. Chem. Int. Ed. 2005; 44: 1525
  • 13 Annulation; General Procedure Azoalkene 5 (0.20 mmol), β-keto ester 3 (0.30 mmol, 1.50 equiv), and [(R)-(+)-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl]-diaquo-palladium(II) bis(triflate) (1e) (0.01 mmol, 5 mol%) were added to a screw-cap vial and dissolved in dry ethyl acetate (2.0 mL) and then stirred until complete consumption of the starting material (monitored by TLC). Purification by flash column chromatography over SiO2 resulted in the corresponding products 8. 3a-(tert-Butyl) 3-Ethyl 6a-Hydroxy-2-methyl-1-(phenylamino)-4,5,6,6a-tetrahydrocyclopenta[b]pyrrole-3,3a(1H)-dicarboxylate (8a) Yield: 79.7 mg (99%); beige solid; [α]D 23 –46 (c 1.00, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.24–7.18 (m, 2 H), 6.92–6.78 (m, 3 H), 6.15 (s, 1 H), 4.22 (dq, J = 10.8, 7.1 Hz, 1 H), 4.06 (dq, J = 10.8, 7.1 Hz, 1 H), 3.79 (s, 1 H), 2.75 (s, 1 H), 2.28 (s, 3 H), 2.04–1.87 (m, 2 H), 1.80–1.61 (m, 3 H), 1.49 (s, 9 H), 1.26 (t, J = 7.1 Hz, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 165.9, 162.0, 148.9, 129.5, 120.6, 112.6, 104.8, 82.1, 64.3, 59.2, 35.6, 28.2, 23.1, 14.6, 12.4. IR (KBr): 3421, 3327, 2977, 5930, 1721, 1667, 1602, 1497, 1454, 1377, 1369, 1326, 1317, 1289, 1245, 1186, 1165, 1100, 1065, 993, 921, 886, 846, 753, 695, 666, 506 cm–1. HRMS (ESI): m/z [M + H]+ calcd for C22H31N2O5: 403.223; found: 403.226. HPLC: Chiralpak IA (n-hexane/2-propanol = 90:10, flow rate = 1.0 mL min–1, λ = 280 nm); t R = 10.05 min (major), t R = 28.73 (minor); e.r. 99:1.
  • 14 Fujii A, Hagiwara E, Sodeoka M. J. Am. Chem. Soc. 1999; 121: 5450