Synthesis 2024; 56(02): 281-292
DOI: 10.1055/a-2193-4701
paper

Copper Nanoparticles on Montmorillonite K-10: A Versatile Catalyst for the One-Pot Synthesis of 3,5-Disubstituted Isoxazoles Using Various Methodologies

Santiago Stabile
,
Esteban E. Bjerg
,
This work was generously supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP-2021-2023-1665), Fondo para la Investigación Científica y Tecnológica, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Prest. BID PICT-2018-2471), and Secretaría General de Ciencia y Tecnología, Universidad Nacional del Sur (UNS, PGI 24/Q106) from Argentina. S.S. thanks CONICET for a postdoctoral fellowship and E.E.B. thanks CONICET for a doctoral fellowship.


Abstract

A readily prepared and versatile heterogeneous catalyst composed of copper nanoparticles supported on montmorillonite K-10 (CuNPs/MK-10) has proven to be highly effective in catalyzing the synthesis of isoxazoles through various one-pot methodologies with high atom economy. These methodologies allow for the use of readily available starting materials, including aldehydes and alkynes through 1,3-dipolar cycloaddition reactions, as well as via cycloisomerization of ynones. Additionally, the CuNPs/MK-10 catalyst promoted the in situ formation of the ynones via an acyl Sonogashira coupling. Furthermore, a three-step one-pot methodology was also developed, starting from carboxylic acids and involving the in situ generation of acyl chlorides.

Supporting Information



Publikationsverlauf

Eingereicht: 01. August 2023

Angenommen nach Revision: 17. Oktober 2023

Accepted Manuscript online:
17. Oktober 2023

Artikel online veröffentlicht:
20. November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Tandon R, Singh I, Luxami V, Tandon N, Paul K. Chem. Rec. 2019; 19: 362
    • 1b Akter M, Rupa K, Anbarasan P. Chem. Rev. 2022; 122: 13108
    • 1c Adhikari A, Bhakta S, Ghosh T. Tetrahedron 2022; 126: 133085
    • 1d Desai B, Patel M, Dholakiya BZ, Rana S, Naveen T. Chem. Commun. 2021; 57: 8699
    • 1e Delost MD, Smith DT, Anderson BJ, Njardarson JT. J. Med. Chem. 2018; 61: 10996
    • 1f Flick AC, Leverett CA, Ding HX, McInturff E, Fink SJ, Helal CJ, O’Donnell CJ. J. Med. Chem. 2019; 62: 7340
    • 1g Hu Y, Li C.-Y, Wang X.-M, Yang Y.-H, Zhu H.-L. Chem. Rev. 2014; 114: 5572
    • 2a Bissantz KC, Kuhn B, Stahl M. J. Med. Chem. 2010; 53: 5061
    • 2b Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845

      For some examples about the use of isoxazoles as synthetic intermediates, see:
    • 3a Pinho e Melo TM. V. D. Curr. Org. Chem. 2005; 9: 925
    • 3b Baraldi PG, Barco A, Benetti S, Pollini GP, Simon D. Synthesis 1987; 857
    • 3c Charest MG, Lerner CD, Brubaker JD, Siegel DR, Myers AG. Science 2005; 308: 395
    • 3d Heasley B. Angew. Chem. Int. Ed. 2011; 50: 8474
  • 4 Thakur A, Verma M, Bharti R, Sharma R. Tetrahedron 2022; 119: 132813
  • 5 Morita T, Yugandar S, Fuse S, Nakamura H. Tetrahedron Lett. 2018; 59: 1159
  • 6 Hu F, Szostak M. Adv. Synth. Catal. 2015; 357: 583

    • Some examples about synthetic methods for the construction of isoxazole rings not included in refs. 4–6:
    • 7a Heaney F. Eur. J. Org. Chem. 2012; 3043
    • 7b Abdukadera A, Sun Y, Zhang Z, Liu C. Catal. Commun. 2018; 105: 43
    • 7c Bondarenko OB, Zyk NV. Chem. Heterocycl. Compd. 2020; 56: 694
    • 7d Madhavan S, Keshri SK, Kapur M. Asian J. Org. Chem. 2021; 10: 3127
  • 8 Alonso F, Moglie Y, Radivoy G. Acc. Chem. Res. 2015; 48: 2516
    • 9a Nielsen BE, Stabile S, Vitale C, Bouzat C. ACS Chem. Neurosci. 2020; 11: 2688
    • 9b Santana-Romo F, Lagos CF, Duarte Y, Castillo F, Moglie Y, Maestro MA, Charbe N, Zacconi FC. Molecules 2020; 25: 491
    • 10a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 10b Tornøe C. W., Meldal M.; Peptidotriazoles: Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions on Solid-Phase, In Peptides: The Wave of the Future, Proceedings of the Second International and the Seventeenth American Peptide Symposium:San Diego, California, U.S.A., June 9–14, 2001; Lebl, M.; Houghten, R. A., Eds.; American Peptide Society/Kluwer Academic Publishers: San Diego, 2001, 263.
    • 10c Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 10d Agard NJ, Prescher JA, Bertozzi CR. J. Am. Chem. Soc. 2004; 126: 15046
    • 10e Castelvecchi D, Ledford H. Nature 2022; 610: 242
    • 11a Hansen TV, Wu P, Fokin VV. J. Org. Chem. 2005; 70: 7761
    • 11b Grecian S, Fokin VV. Angew. Chem. Int. Ed. 2008; 47: 8285
    • 12a Meena DR, Maiti B, Chanda K. Tetrahedron Lett. 2016; 57: 5514
    • 12b DeKorver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem. Rev. 2010; 110: 5064
    • 12c Evano G, Coste A, Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
    • 12d Oakdale JS, Sit RK, Fokin VV. Chem. Eur. J. 2014; 20: 11101
    • 13a Bharate SB, Padala AK, Dar BA, Yadav RR, Singh B, Vishwakarma RA. Tetrahedron Lett. 2013; 54: 3558
    • 13b Chanda K, Rej S, Huang MH. Nanoscale 2013; 5: 12494
    • 13c Pardeshi SS, Labhane PK, Disale ST, More DH, Sapkal BM. ChemistrySelect 2022; 7: e202201818
  • 14 MacDonald JE, Kelly JA, Veinot JG. C. Langmuir 2007; 23: 9543
    • 15a Denmark SE, Kallemeyn JM. J. Org. Chem. 2005; 70: 2839
    • 15b Letourneau JJ, Riveillo C, Ohlmeyer MH. J. Tetrahedron Lett. 2007; 48: 1739
  • 16 Zhang X.-W, He X.-L, Yan N, Zheng H.-X, Hu X.-G. J. Org. Chem. 2020; 85: 15726
    • 17a McIntosh ML, Naffziger MR, Ashburn BO, Zakharov LN, Carter RG. Org. Biomol. Chem. 2012; 10: 9204
    • 17b Wang G.-W, Cheng M.-X, Ma R.-S, Yang S.-D. Chem. Commun. 2015; 51: 6308
    • 17c Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
    • 17d Willy B, Rominger F, Müller TJ. J. Synthesis 2008; 293
    • 17e Wang X.-D, Zhu L.-H, Liu P, Wang X.-Y, Yuan H.-Y, Zhao Y.-L. J. Org. Chem. 2019; 84: 16214

      For some recent examples, see:
    • 18a Moglie Y, Buxaderas E, Mancini A, Alonso F, Radivoy G. ChemCatChem 2019; 11: 1487
    • 18b Bjerg EE, Marchán-García J, Buxaderas E, Moglie Y, Radivoy G. J. Org. Chem. 2022; 87: 13480
    • 18c Nador F, Mancebo-Aracil J, Zanotto D, Ruiz-Molina D, Radivoy G. RSC Adv. 2021; 11: 2074
  • 19 Mancebo-Aracil J, Alonso B, Radivoy G. Chem. Proc. 2021; 3: 103 DOI: 10.3390/ecsoc-24-08452.
    • 20a Beltrame P, Comotti A, Vegleo C. Chem. Commun. 1967; 996
    • 20b Dondoni A, Mangini A, Ghersetti S. Tetrahedron Lett. 1966; 7: 4789
    • 21a Li J, Hu M, Li C, Li C, Li J, Wu W, Jiang H. Adv. Synth. Catal. 2018; 360: 2707
    • 21b Liu X, Hong D, She Z, Hersh WH, Yoo B, Chen Y. Tetrahedron 2018; 74: 6593
    • 21c Hueda M, Ikeda Y, Sato A, Ito Y, Kakiuchi M, Shono H, Miyoshi T, Naito T, Miyata O. Tetrahedron 2011; 67: 4612
    • 21d Li C, Li J, Zhou F, Li C, Wu W. J. Org. Chem. 2019; 84: 11958
  • 22 Ueda M, Sugita S, Sato A, Miyoshi T, Miyata O. J. Org. Chem. 2012; 77: 9344
  • 23 Duan M, Hou G, Zhao Y, Zhu C, Song C. J. Org. Chem. 2022; 87: 11222
    • 24a Wang K, Yang L, Zhao W, Cao L, Sun Z, Zhang F. Green Chem. 2017; 19: 1949
    • 24b Sun W, Wang Y, Wu X, Yao X. Green Chem. 2013; 15: 2356
  • 25 Martínez S, Veth L, Lainer B, Dydio P. ACS Catal. 2021; 11: 3891
  • 26 Harigae R, Moriyama K, Togo H. J. Org. Chem. 2014; 79: 2049
  • 27 Yoshimura A, Middleton KR, Todora AD, Kastern BJ, Koski SR, Maskaev AV, Zhdankin VV. Org. Lett. 2013; 15: 4010
  • 28 Kumar GR, Kumar YK, Reddy MS. Chem. Commun. 2016; 52: 6589
  • 29 González-Soria MJ, Alonso F. Adv. Synth. Catal. 2019; 361: 5005
  • 30 Carloni L.-E, Mohnani S, Bonifazi D. Eur. J. Org. Chem. 2019; 7322
  • 31 Mohammed S, Vishwakarma RA, Bharate SB. RSC Adv. 2015; 5: 3470
  • 32 Khairnar PV, Lung T.-H, Lin Y.-J, Wu C.-Y, Koppolu SR, Edukondalu A, Karanam P, Lin W. Org. Lett. 2019; 21: 4219
  • 33 Li Z, Wen G, Fu R, Yang J. J. Chem. Res. 2016; 40: 643