Synlett 2024; 35(07): 807-810
DOI: 10.1055/a-2159-4369
letter

Nickel-Catalyzed Decarbonylation of α-Oxyacetic Acid Thioesters: Hydroxymethylation of Mercaptans

Rui Tian
,
Jia-Xin Li
,
Yong-Ming Zhu


Abstract

A strategy for the Ni-catalyzed decarbonylation of α-oxyacetic acid thioesters is described, providing a new pathway for the synthesis of monosulfide acetals, and further proving that oxygen atoms can stabilize an α-carbocation and promote a decarbonylation reaction. This method has good functional-group compatibility and can tolerate a wide range of electron-withdrawing, electron-neutral, and electron-donating substituents. In addition, this method complements the conventional cross-coupling reactions.

Supporting Information



Publikationsverlauf

Eingereicht: 25. Juni 2023

Angenommen nach Revision: 23. August 2023

Accepted Manuscript online:
23. August 2023

Artikel online veröffentlicht:
11. Oktober 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
  • 2 Liu C, Szostak M. ChemCatChem 2021; 13: 4878
  • 3 Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
  • 4 Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
  • 5 Guo S.-r, Yuan Y.-q, Xiang J.-n. Org. Lett. 2013; 15: 4654
  • 6 Zhu X, Xie X, Li P, Guo J, Wang L. Org. Lett. 2016; 18: 1546
  • 7 Liu C, Szostak M. Chem. Commun. 2018; 54: 2130
  • 8 Brigham CE, Malapit CA, Lalloo N, Sanford MS. ACS Catal. 2020; 10: 8315
  • 9 Zhou J.-Y, Tian R, Zhu Y.-M. J. Org. Chem. 2021; 86: 12148
  • 10 Zheng Z.-J, Jiang C, Shao P.-C, Liu W.-F, Zhao T.-T, Xu P.-F, Wei H. Chem. Commun. 2019; 55: 1907
  • 11 Tian R, Li J.-X, Zhu Y.-M. Tetrahedron 2023; 139: 133437
  • 12 Zhou J.-Y, Tao S.-W, Liu R.-Q, Zhu Y.-M. J. Org. Chem. 2019; 84: 11891
    • 13a Cao H, Liu X, Bie F, Shi Y, Han Y, Yan P, Liu C. Org. Chem. Front. 2021; 8: 1587
    • 13b Ding K, Xu S, Alotaibi R, Paudel K, Reinheimer EW, Weatherly J. J. Org. Chem. 2017; 82: 4924
    • 14a Lautens M, Marchese AD. Synfacts 2020; 16: 679
    • 14b Malapit CA, Borrell M, Milbauer MW, Brigham CE, Sanford MS. J. Am. Chem. Soc. 2020; 142: 5918
    • 14c Qin T, Malins LR, Edwards JT, Merchant RR, Novak AJ, Zhong J.-Z, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 260
  • 16 Takise R, Isshiki R, Muto K, Itami K, Yamaguchi J. J. Am. Chem. Soc. 2017; 139: 3340
  • 17 Lu H, Yu T.-Y, Xu P.-F, Wei H. Chem. Rev. 2020; 121: 365
  • 18 Guo L, Rueping M. Acc. Chem. Res. 2018; 51: 1185
    • 19a Muto K, Yamaguchi J, Musaev DG, Itami K. Nat. Commun. 2015; 6: 7508
    • 19b Cao D, Ataya M, Chen Z, Zeng H, Peng Y, Khaliullin RZ, Li C.-J. Nat. Commun. 2022; 13: 1805
  • 20 Thioethers 2at; General Procedure A 15 mL sealed tube equipped with a magnetic stirrer bar was charged with the appropriate thioester 1 (0.5mmol), NiCl2 (0.05 mmol, 7 mg), dppe (0.1 mmol, 40 mg), Na2CO3 (0.1mmol, 11 mg), Mn (0.25 mmol, 14 mg), and anhyd toluene (1.0 mL). The tube was purged with nitrogen, and the contents were stirred at 170 °C for 24 h. When the reaction was complete, the mixture was filtered through a pad of Celite and the solvents were removed under reduced pressure. The residue was purified by column chromatography [silica gel, PE–EtOAc (500:1)]. 2-(4-Toluenesulfanyl)tetrahydrofuran (2a) Colorless liquid; yield: 81 mg (83%). 1H NMR (300 MHz, CDCl3): δ = 7.42 (d, J = 7.9 Hz, 2 H), 7.12 (d, J = 7.5 Hz, 2 H), 5.59 (dd, J = 7.1, 3.6 Hz, 1 H), 4.12–3.89 (m, 2 H), 2.34 (d, J = 3.5 Hz, 4 H), 2.05–1.79 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 137.0, 131.9, 131.8, 129.6, 87.6, 67.2, 32.6, 24.9, 21.1. 2-(4-Fluorophenylsulfanyl)tetrahydrofuran (2f) Colorless liquid; yield: 65 mg (66%). 1H NMR (300 MHz, CDCl3): δ = 7.41 (s, 2 H), 6.91 (d, J = 10.2 Hz, 2 H), 5.45 (s, 1 H), 3.89 (d, J = 15.5 Hz, 2 H), 2.26 (s, 1 H), 1.90 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 162.4 (d, J = 246.9 Hz), 134.0 (d, J = 8.0 Hz), 130.5 (d, J = 3.3 Hz), 115.9 (d, J = 21.7 Hz), 87.8, 67.2, 32.6, 24.8. 2-(4-Toluenesulfanyl)tetrahydro-2H-pyran (2p) Colorless liquid; yield: 49 mg (47%). 1H NMR (300 MHz, CDCl3): δ = 7.42 (d, J = 7.8 Hz, 2 H), 7.14 (d, J = 7.7 Hz, 2 H), 5.16 (dd, J = 6.0, 3.8 Hz, 1 H), 4.21 (dt, J = 10.3, 4.7 Hz, 1 H), 3.60 (dt, J = 11.0, 5.0 Hz, 1 H), 2.36 (s, 3 H), 2.10–1.97 (m, 1 H), 1.86 (dtt, J = 13.2, 6.2, 3.4 Hz, 2 H), 1.68–1.62 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 137.0, 131.7, 131.4, 129.6, 85.7, 64.6, 31.6, 25.6, 21.7, 21.1. 1-[(tert-Butoxymethyl)sulfanyl]-4-methylbenzene (2q) Colorless liquid; yield: 71 mg (68%). 1H NMR (300 MHz, CDCl3): δ = 7.31 (d, J = 7.8 Hz, 2 H), 7.02 (d, J = 8.0 Hz, 2 H), 4.78 (d, J = 2.3 Hz, 2 H), 2.24 (s, 3 H), 1.16 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 136.6, 132.8, 130.7, 129.6, 75.2, 68.8, 27.9, 21.1.