Synthesis 2024; 56(06): 975-988
DOI: 10.1055/a-2157-9001
paper
Emerging Trends in Glycoscience

Glycosyl Triazole Based Pyridinamide/CuI-Catalyzed Coupling of 2-Halobenzamides with Active Methylene Compounds

Sumit K. Singh
,
Sunil Kumar
,
Mangal S. Yadav
,
Subrato Bhattacharya
,
The authors sincerely thank the Science and Engineering Research Board (SERB), New Delhi (Grant No.: CRG/2021/002776) and the Council of Scientific and Industrial Research (CSIR), New Delhi, India (Scheme No. 02(0345)/19/EMR-II) for financial support. The authors also gratefully acknowledge the Institute of Eminence (IOE), Banaras Hindu University for an incentive grant. MSY and SK acknowledge the CSIR, New Delhi for fellowships (SRF).


Abstract

This report describes a convenient method for the Cu(I)-catalyzed tandem synthesis of dihydrophenanthridinediones and substituted isoquinolinones with the assistance of efficient glycosyl 1,2,3-triazole-based pyridinamide ligands. The catalytic system effectively works for the coupling of N-substituted 2-halobenzamides with various active methylene compounds to form biologically relevant heterocyclic scaffolds in high to excellent yields. The consecutive path of the reaction including intermolecular C–C cross-coupling followed by intramolecular cyclization efficiently takes place at low catalytic loading. These glycosyl triazole-appended pyridinamides were synthesized in good yields by a CuI/DIPEA-mediated regioselective CuAAC click reaction. The notable features of the method include low catalytic loading, the use of cost-effective and biocompatible ligands, high reaction yield, and easily accessible starting materials that make the protocol more versatile.

Supporting Information



Publication History

Received: 06 July 2023

Accepted after revision: 21 August 2023

Accepted Manuscript online:
21 August 2023

Article published online:
10 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Pettit GR, Meng YH, Herald DL, Graham KA. N, Pettit RK, Doubek DL. J. Nat. Prod. 2003; 66: 1065
  • 2 Hiroshi I, Ayako S, Tamaki F, Junichi K, Nobutaka F, Haruaki Y. Chem. Lett. 1980; 9: 875
  • 3 Hudlicky T, Rinner U, Gonzalez D, Akgun H, Schilling S, Siengalewicz P, Martinot TA, Pettit GR. J. Org. Chem. 2002; 67: 8726
  • 4 Gonzalez D, Martinot T, Hudlickly T. Tetrahedron Lett. 1999; 40: 3077
  • 5 Krane BD, Shamma M. J. Nat. Prod. 1982; 45: 377
  • 6 Rigby JH, Maharoof US. M, Mateo ME. J. Am. Chem. Soc. 2000; 122: 6624
  • 7 Zajdel P, Marciniec K, Maslankiewicz A, Grychowska K, Satała G, Duszynska B, Lenda T, Siwek A, Nowak G, Partyka A, Wrobel D, Więsek MJ, Bojarski AJ, Wesolowska A, Pawlowski M. Eur. J. Med. Chem. 2013; 60: 42
  • 8 Ukita T, Nakamura Y, Kubo A, Yamamoto Y, Moritani Y, Saruta K, Higashijima T, Kotera J, Takagi M, Kikkawa K, Omori K. J. Med. Chem. 2001; 44: 2204
  • 9 Pellicciari R, Camaioni E, Costantino G, Formentini L, Sabbatini P, Venturoni F, Eren G, Bellocchi D, Chiarugi A, Moroni F. ChemMedChem 2008; 3: 914
  • 10 Baba A, Kawamura N, Makino H, Ohta Y, Taketomi S, Sohda T. J. Med. Chem. 1996; 39: 5176
  • 11 Simonsen KB, Kehler J, Juhl K, Khanzhin N, Nielsen SM. Patent WO2008131779A1, 2008
  • 12 Jen T, Dienel B, Dowalo F, Van Hoeven F, Bender P, Loev B. J. Med. Chem. 1973; 16: 633
  • 13 Roth J, Madoux F, Hodder P, Roush WR. Bioorg. Med. Chem. Lett. 2008; 18: 2628
  • 14 Joule JA, Mills K. Heterocyclic Chemistry, 4th ed. Blackwell; Oxford: 2000
  • 15 Glushkov VA, Shklyaev YV. Chem. Heterocycl. Compd. 2001; 37: 663
  • 16 Eicher T, Hauptmann S. The Chemistry of Heterocycles. Wiley-VCH; Weinheim: 2003
  • 17 Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
  • 18 Gabriel S, Colman J. Ber. Dtsch. Chem. Ges. 1900; 33: 980
  • 19 Jagtap PG, Baloglu E, Southan G, Williams W, Roy A, Nivorozhkin A, Landrau N, Andrew KD, Salzman L, Szabo C. Org. Lett. 2005; 7: 1753
  • 20 Wei WT, Liu Y, Ye LM, Lei RH, Zhang XJ, Yan M. Org. Biomol. Chem. 2015; 13: 817
  • 21 Zheng Z, Alper H. Org. Lett. 2008; 10: 4903
  • 22 Wang F, Liu H, Fu H, Jiang Y, Zhao Y. Org. Lett. 2009; 11: 2469
  • 23 Too PC, Chiba S. Chem. Commun. 2012; 48: 7634
  • 24 Snow RJ, Butz T, Hammach A, Kapadia S, Morwick TM, Prokopowicz AS. III, Takahashi H, Tan JD, Tschantz MA, Wang XJ. Tetrahedron Lett. 2002; 43: 7553
  • 25 Luo X, Zhou L, Lu H, Deng G, Liang Y, Yang C, Yang Y. Org. Lett. 2019; 21: 9960
  • 26 Liang Y, Wang R. Tetrahedron Lett. 2023; 114: 154287
  • 27 Upadhyay K, Thakur RK, Shukla SK, Tripathi RP. J. Org. Chem. 2016; 81: 5046
  • 28 Beck H, Thaler T, Meibom D, Meininghaus M, Jörißen H, Dietz L, Terjung C, Bairlein M, von Bühler C.-J, Anlauf S, Fürstner C, Stellfeld T, Schneider D, Gericke KM, Buyck T, Lovis K, Münster U, Anlahr J, Kersten E, Levilain G, Marossek V, Kast R. J. Med. Chem. 2020; 63: 11639
  • 29 Wu Y, Sun P, Zhang K, Yang T, Yao H, Lin A. J. Org. Chem. 2016; 81: 2166
  • 30 Hua R. Catalysts 2021; 11: 620
  • 31 Xie H, Xing Q, Shan Z, Xiao F, Deng GJ. Adv. Synth. Catal. 2019; 361: 1896
  • 32 Zhong H, Yang D, Wang S, Huang J. Chem. Commun. 2012; 48: 3236
  • 33 Sen M, Mandal R, Das A, Kalsi D, Sundararaju B. Chem. Eur. J. 2017; 23: 17454
  • 34 Fang Z, Wang Y, Wang Y. Org. Lett. 2019; 21: 434
  • 35 Park CP, Nagle A, Yoon CH, Chen C, Jung KW. J. Org. Chem. 2009; 74: 6231
  • 36 Lu J, Gong X, Yang H, Fu H. Chem. Commun. 2010; 46: 4172
  • 37 Liu Y, Zeng R, Pan J, Zou J. Chin. J. Chem. 2014; 32: 883
    • 38a Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Chem. Rev. 2016; 116: 3086
    • 38b Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Chem. Rev. 2021; 121: 7638
    • 38c Tiwari VK. Chem. Rec. 2021; 21: 3029
    • 39a Jaiswal MK, Tiwari VK. Chem. Rec. 2023; e202300167
    • 39b Jaiswal MK, Gupta A, Yadav MS, Pandey VK, Tiwari VK. Chem. Eur. J. 2023; e202301749
  • 40 Jha AK, Jain N. Tetrahedron Lett. 2013; 54: 4738
  • 41 Kraft J, Schmollinger D, Maudrich J, Ziegler T. Synthesis 2015; 47: 199
  • 42 Shen H, Shen C, Chen C, Wang A, Zhang P. Catal. Sci. Technol. 2015; 5: 2065
  • 43 Singh SK, Mishra N, Kumar S, Jaiswal MK, Tiwari VK. ChemistrySelect 2022; 7: e202201314
  • 44 Shen C, Shen H, Yang M, Xia C, Zhang P. Green Chem. 2015; 17: 225
  • 45 Singh BK, Yadav AK, Kumar B, Gaikwad A, Sinha SK, Chaturvedi V, Tripathi RP. Carbohydr. Res. 2008; 343: 1153
  • 46 Singh SK, Yadav MS, Singh AS, Agrahari AK, Mishra N, Kumar S, Tiwari VK. ACS Omega 2021; 6: 21125
  • 47 Woodward S, Dieguez M, Pamies O. Coord. Chem. Rev. 2010; 254: 2007
  • 48 Mishra N, Singh AS, Agrahari AK, Singh SK, Singh M, Tiwari VK. ACS Comb. Sci. 2019; 21: 389
  • 49 Mishra N, Singh SK, Singh AS, Agrahari AK, Tiwari VK. J. Org. Chem. 2021; 86: 17884
  • 50 Singh SK, Kumar S, Yadav MS, Tiwari VK. J. Org. Chem. 2022; 87: 22, 15389
  • 51 Chen Z, Jiang Y, Zhang L, Guo Y, Ma D. J. Am. Chem. Soc. 2019; 141: 3541
  • 52 Zhao J, Niu S, Jiang X, Jiang Y, Zhang X, Sun T, Ma D. J. Org. Chem. 2018; 83: 6589
  • 53 Gao J, Bhunia S, Wang K, Gan L, Xia S, Ma D. Org. Lett. 2017; 19: 2809
  • 54 Pawar GG, Wu H, De S, Ma D. Adv. Synth. Catal. 2017; 359: 1631
  • 55 Derosa J, Cantu AL, Boulous MN, O’Duill ML, Turnbull JL, Liu Z, De La Torre DM, Engle KM. J. Am. Chem. Soc. 2017; 139: 5183
  • 56 Chauhan A, Paladhi S, Debnath M, Mandal S, Das RN, Bhowmik S, Dash J. Bioorg. Med. Chem. 2014; 22: 4422
  • 57 Ziegler T, Hermann C. Tetrahedron Lett. 2008; 49: 2166