Subscribe to RSS
DOI: 10.1055/a-2122-8238
p-Block Element Catecholates: Lewis Superacidic, Constitutionally Dynamic, and Redox Active
This work was supported by Deutsche Forschungsgemeinschaft (grants GR 5007/2-1) and by Fonds der Chemischen Industrie. The author acknowledges support by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant no. INST 40/575-1 FUGG (JUSTUS 2 cluster).
Abstract
Numerous strategies for enhancing the reactivity and properties of p-block elements have been devised in the past decades. This Account discusses our approaches by distinct ligand control on p-block elements in their normal (group) oxidation states. Catecholato ligands on silicon, germanium, or phosphorus produce a range of rewarding properties. Substantial electron withdrawal paired with structural constraint effects (influence of deformation energy) impart Lewis superacidity to these abundant elements. The ease of synthesis of such species facilitates screening in catalysis, promising a range of applications by powerful bond activation. Low-barrier Si–O/Si–O bond metathesis provides the most abundant bond in our Earth’s crust, with adaptive features under mild conditions, and establishes a new branch of constitutional dynamic chemistry. The redox-active character of catecholates grants access to novel compounds with tunable open-shell features. Overall, p-block catecholates offer unique opportunities due to their versatile features that will enrich the chemistry of the main-group elements.
1 Introduction
2 Halogenated Catecholates at Silicon Cause Substantial Lewis Acidity
3 Constitutional Dynamics Cause a Structural Mystery
4 Strong Silicon Lewis Acids Allow the Exploration of Uncharted Structures, Bond Activations, and Catalysis
5 The Catechol Approach on Other Elements: Germanium and Phosphorus
6 Catechols Are Redox Active: Also at Silicon
7 Conclusion
Key words
catechols - Lewis acids - bond activation - constitutional dynamics - diradicals - superacidsPublication History
Received: 20 June 2023
Accepted after revision: 04 July 2023
Accepted Manuscript online:
04 July 2023
Article published online:
29 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Tolman WB. Activation of Small Molecules: Organometallic and Bioinorganic Perspectives. Wiley-VCH; Weinheim: 2006
- 1b Milani B, Licini G, Clot E, Albrecht M. Dalton Trans. 2016; 45: 14419
- 2 Mason R. Nature 1968; 217: 543
- 3 Encyclopedia of Geochemistry . Marshall CP, Fairbridge RW. P. Kluwer Academic; Dordrecht: 1999
- 5 Yadav S, Saha S, Sen SS. ChemCatChem 2016; 8: 486
- 6 Stephan DW, Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400
- 7a Dunn NL, Ha M, Radosevich AT. J. Am. Chem. Soc. 2012; 134: 11330
- 7b McCarthy SM, Lin Y.-C, Devarajan D, Chang JW, Yennawar HP, Rioux RM, Ess DH, Radosevich AT. J. Am. Chem. Soc. 2014; 136: 4640
- 7c Reichl KD, Dunn NL, Fastuca NJ, Radosevich AT. J. Am. Chem. Soc. 2015; 137: 5292
- 7d Wang F, Planas O, Cornella J. J. Am. Chem. Soc. 2019; 141: 4235
- 7e Kindervater MB, Marczenko KM, Werner-Zwanziger U, Chitnis SS. Angew. Chem. Int. Ed. 2019; 58: 7850
- 8 Khusnutdinova JR, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12236
- 9a Gunanathan C, Milstein D. Science 2013; 341: 1229712
- 9b Liang Y, Luo J, Diskin-Posner Y, Milstein D. J. Am. Chem. Soc. 2023; 145: 9164
- 9c Liang Y, Das UK, Luo J, Diskin-Posner Y, Avram L, Milstein D. J. Am. Chem. Soc. 2022; 144: 19115
- 10a Gellrich U, Diskin-Posner Y, Shimon LJ. W, Milstein D. J. Am. Chem. Soc. 2016; 138: 13307
- 10b Gellrich U. Angew. Chem. Int. Ed. 2018; 57: 4779
- 11a Ebner F, Greb L. J. Am. Chem. Soc. 2018; 140: 17409
- 11b Ebner F, Wadepohl H, Greb L. J. Am. Chem. Soc. 2019; 141: 18009
- 11c Ebner F, Sigmund LM, Greb L. Angew. Chem. Int. Ed. 2020; 59: 17118
- 11d Sigmund LM, Greb L. Chem. Sci. 2020; 11: 9611
- 11e Ebner F, Greb L. Chem 2021; 7: 2151
- 11f Ebner F, Mainik P, Greb L. Chem. Eur. J. 2021; 27: 5120
- 11g Ruppert H, Sigmund LM, Greb L. Chem. Commun. 2021; 57: 11751
- 11h Sigmund LM, Ehlert C, Enders M, Graf J, Gryn’ova G, Greb L. Angew. Chem. Int. Ed. 2021; 60: 15632
- 11i Schorpp M, Yadav R, Roth D, Greb L. Angew. Chem. Int. Ed. 2022; 61: e202207963
- 11j Sigmund LM, Engels E, Richert N, Greb L. Chem. Sci. 2022; 13: 11215
- 12a Martyanov K, Kuropatov V. Inorganics 2018; 6: 48
- 12b Geng H, Zhong Q.-Z, Li J, Lin Z, Cui J, Caruso F, Hao J. Chem. Rev. 2022; 122: 11432
- 12c Dubey SN, Mehrotra RC. J. Inorg. Nucl. Chem. 1964; 26: 1543
- 12d Pichet P, Benoit RL. Inorg. Chem. 1967; 6: 1505
- 12e Andrä K, Hoppe H.-R. Z. Anorg. Allg. Chem. 1975; 413: 97
- 12f Stegmann HB, Schrade R, Saur H, Schuler P, Scheffler K. J. Organomet. Chem. 1981; 214: 197
- 12g Holmes RR, Day RO, Sau AC, Holmes JM. Inorg. Chem. 1986; 25: 600
- 13 Rosenheim A, Sorge O. Ber. Dtsch. Chem. Ges. 1920; 53: 932
- 14a Kieser JM, Jones LO, Lin NJ, Zeller M, Schatz GC, Bart SC. Inorg. Chem. 2021; 60: 3460
- 14b Petrov PA, Filippova EA, Sukhikh TS, Novikov AS, Sokolov MN. Inorg. Chem. 2022; 61: 9184
- 15 Glavinović M, Krause M, Yang L, McLeod JA, Liu L, Baines KM, Friščić T, Lumb J.-P. Sci. Adv. 2017; 3: e1700149
- 16a Corcé V, Chamoreau L.-M, Derat E, Goddard J.-P, Ollivier C, Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
- 16b Millanvois A, Ollivier C, Fensterbank L. Eur. J. Inorg. Chem. 2022; 2022: e202101109
- 17 Pierpont CG, Lange CW. Prog. Inorg. Chem. 1994; 41: 331
- 18 Liberman-Martin AL, Bergman RG, Tilley TD. J. Am. Chem. Soc. 2015; 137: 5328
- 19 Ashley AE, Herrington TJ, Wildgoose GG, Zaher H, Thompson AL, Rees NH, Krämer T, O’Hare D. J. Am. Chem. Soc. 2011; 133: 14727
- 20 Müller LO, Himmel D, Stauffer J, Steinfeld G, Slattery J, Santiso-Quiñones G, Brecht V, Krossing I. Angew. Chem. Int. Ed. 2008; 47: 7659
- 21 Maskey R, Schädler M, Legler C, Greb L. Angew. Chem. Int. Ed. 2018; 57: 1717
- 22 Hartmann D, Schädler M, Greb L. Chem. Sci. 2019; 10: 7379
- 23a Greb L. Chem. Eur. J. 2018; 24: 17881
- 23b Erdmann P, Greb L. Angew. Chem. Int. Ed. 2022; 61: e202114550
- 24a Fleischer H. Eur. J. Inorg. Chem. 2001; 2001: 393
- 24b Sigmund LM, Maier R, Greb L. Chem. Sci. 2022; 13: 510
- 25a Denmark SE, Jacobs RT, Dai-Ho G, Wilson S. Organometallics 1990; 9: 3015
- 25b Myers AG, Widdowson KL. J. Am. Chem. Soc. 1990; 112: 9672
- 25c Denmark SE, Griedel BD, Coe DM, Schnute ME. J. Am. Chem. Soc. 1994; 116: 7026
- 25d Kinnaird JW. A, Ng PY, Kubota K, Wang X, Leighton JL. J. Am. Chem. Soc. 2002; 124: 7920
- 25e Kobayashi J, Kawaguchi K, Kawashima T. J. Am. Chem. Soc. 2004; 126: 16318
- 25f Zhang X, Houk KN, Leighton JL. Angew. Chem. Int. Ed. 2005; 44: 938
- 25g Burns NZ, Hackman BM, Ng PY, Powelson IA, Leighton JL. Angew. Chem. Int. Ed. 2006; 45: 3811
- 26 Thorwart T, Roth D, Greb L. Chem. Eur. J. 2021; 27: 10422
- 27 Simonneau A, Oestreich M. Nat. Chem. 2015; 7: 816
- 28 Hartmann D, Greb L. Angew. Chem. Int. Ed. 2020; 59: 22510
- 29 Hartmann D, Thorwart T, Müller R, Thusek J, Schwabedissen J, Mix A, Lamm J.-H, Neumann B, Mitzel NW, Greb L. J. Am. Chem. Soc. 2021; 143: 18784
- 30a Weiss A, Reiff G, Weiss A. Z. Anorg. Allg. Chem. 1961; 311: 151
- 30b Bartels H. Helv. Chim. Acta 1964; 47: 1605
- 30c Barnum DW. Inorg. Chem. 1970; 9: 1942
- 30d Barnum DW. Inorg. Chem. 1972; 11: 1424
- 30e Shuqin B, Yutaka T, Yoshihiro O, Takushi Y. Chem. Lett. 2008; 37: 1168
- 30f Furgal JC, Lenora CU. Phys. Sci. Rev. 2020; 5: 20190024
- 30g Silicon Biomineralization: Biology, Biochemistry, Molecular Biology, Biotechnology. Müller W. E. G., Springer; Berlin: 2003
- 30h Handbook of Biomineralization: Biological Aspects and Structure Formation. Bäeuerlein E. Wiley-VCH; Weinheim: 2009
- 30i Hess R, Bach R, Deuel H. Experientia 1960; 16: 38
- 30j Heinen W, Oehler JH. Stud. Environ. Sci. 1979; 3: 431
- 31a Boer FP, Flynn JJ, Turley JW. J. Am. Chem. Soc. 1968; 90: 6973
- 31b Harland JJ, Day RO, Vollano JF, Sau AC, Holmes RR. J. Am. Chem. Soc. 1981; 103: 5269
- 31c Boudin A, Cerveau G, Chuit C, Corriu RJ. P, Reye C. Angew. Chem. Int. Ed. 1986; 25: 473
- 32a Roeser J, Prill D, Bojdys MJ, Fayon P, Trewin A, Fitch AN, Schmidt MU, Thomas A. Nat. Chem. 2017; 9: 977
- 32b Yahiaoui O, Fitch AN, Hoffmann F, Fröba M, Thomas A, Roeser J. J. Am. Chem. Soc. 2018; 140: 5330
- 33a Evans DF, Slawin AM. Z, Williams DJ, Wong CY, Woollins JD. J. Chem. Soc., Dalton Trans. 1992; 2383
- 33b Wong CY, Woollins JD. Coord. Chem. Rev. 1994; 130: 175
- 33c Hahn FE, Keck M, Raymond KN. Inorg. Chem. 1995; 34: 1402
- 33d Small JH, McCord DJ, Greaves J, Shea KJ. J. Am. Chem. Soc. 1995; 117: 11588
- 33e Tacke R, Pülm M, Richter I, Wagner B, Willeke R. Z. Anorg. Allg. Chem. 1999; 625: 2169
- 33f Tacke R, Seiler O. In Silicon Chemistry: From the Atom to Extended Systems . Schubert U, Jutzi P. Wiley-VCH, 2003; 324;
- 34a Robert S, Wilhelm K. Z. Anorg. Allg. Chem. 1951; 266: 185
- 34b Zuckerman JJ. J. Chem. Soc. 1962; 873
- 34c Allcock HR, Nugent TA, Smeltz LA. Synth. React. Inorg. Met.-Org. Chem. 1972; 2: 97
- 35a Meyer H, Nagorsen G. Angew. Chem. Int. Ed. 1979; 18: 551
- 35b Würthwein E.-U, von Ragué Schleyer P. Angew. Chem. Int. Ed. 1979; 18: 553
- 35c Dunitz JD. Angew. Chem. Int. Ed. 1980; 19: 1034
- 35d Nagorsen G, Meyer H. Angew. Chem. Int. Ed. 1980; 19: 1034
- 35e Bibber JW, Barnes CL, van der Helm D, Zuckerman JJ. Angew. Chem. 1983; 95: 498
- 35f Hönle W, Dettlaff-Weglikowska U, Walz L, von Schnering HG. Angew. Chem. Int. Ed. 1989; 28: 623
- 35g Ding B, Keese R, Stoeckli-Evans H. Angew. Chem. Int. Ed. 1999; 38: 375
- 36 Schomburg D. Angew. Chem. 1983; 95: 52
- 37a Dettlaff-Weglikowska U, Hey-Hawkins E, von Schnering HG. Z. Naturforsch., B: J. Chem. Sci. 1991; 46: 609
- 37b Hey-Hawkins E, Dettlaff-Weglikowska U, Thiery D, von Schnering HG. Polyhedron 1992; 11: 1789
- 38 Hollstein S, Erdmann P, Ulmer A, Löw H, Greb L, von Delius M. Angew. Chem. Int. Ed. 2023; e202304083
- 39a Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco LM, Pagliaro M. Chem. Rev. 2013; 113: 6592
- 39b Vis BM, Wen J, Mellerup SK, Merchant RD, Mawhinney RC, Kinrade SD. J. Am. Chem. Soc. 2020; 142: 9188
- 40a Nishimura Y, Chung J, Muradyan H, Guan Z. J. Am. Chem. Soc. 2017; 139: 14881
- 40b Tretbar CA, Neal JA, Guan Z. J. Am. Chem. Soc. 2019; 141: 16595
- 41 Heard CJ, Grajciar L, Rice CM, Pugh SM, Nachtigall P, Ashbrook SE, Morris RE. Nat. Commun. 2019; 10: 4690
- 42 Lehn J.-M. Angew. Chem. Int. Ed. 2015; 54: 3276
- 43 Hasell T, Cooper AI. Nat. Rev. Mater. 2016; 1: 16053
- 44 Luo Q, Greb L. Eur. J. Inorg. Chem. 2023; e202300186
- 45 Rosenheim A, Raibmann B, Schendel G. Z. Anorg. Allg. Chem. 1931; 196: 160
- 46a Boudin A, Cerveau G, Chuit C, Corriu RJ. P, Reye C. Angew. Chem. Int. Ed. 1986; 25: 474
- 46b Boudin A, Cerveau G, Chuit C, Corriu RJ. P, Reye C. Organometallics 1988; 7: 1165
- 47 Ansmann N, Hartmann D, Sailer S, Erdmann P, Maskey R, Schorpp M, Greb L. Angew. Chem. Int. Ed. 2022; 61: e202203947
- 48a Gutmann V. Coord. Chem. Rev. 1975; 15: 207
- 48b Gutmann V. The Donor–Acceptor Approach to Molecular Interactions. Plenum; New York: 1978
- 49a Maskey R, Bendel C, Malzacher J, Greb L. Chem. Eur. J. 2020; 26: 17386
- 49b Hosseininasab V, McQuilken AC, Bakhoda A, Bertke JA, Timerghazin QK, Warren TH. Angew. Chem. Int. Ed. 2020; 59: 10854
- 50a Jouffroy M, Primer DN, Molander GA. J. Am. Chem. Soc. 2016; 138: 475
- 50b Levernier E, Jaouadi K, Zhang H.-R, Corcé V, Bernard A, Gontard G, Troufflard C, Grimaud L, Derat E, Ollivier C, Fensterbank L. Chem. Eur. J. 2021; 27: 8782
- 51 Ansmann N, Thorwart T, Greb L. Angew. Chem. Int. Ed. 2022; 61: e202210132
- 52a Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 52b Lian Z, Bhawal NB, Yu P, Morandi B. Science 2017; 356: 1059
- 52c Okumura S, Sun F, Ishida N, Murakami M. J. Am. Chem. Soc. 2017; 139: 12414
- 53a Cárdenas DJ. Angew. Chem. Int. Ed. 1999; 38: 3018
- 53b Luh T.-YLeung M.-k, Wong K.-T. Chem. Rev. 2000; 100: 3187
- 54a Bell CM, Kissounko DA, Gellman SH, Stahl SS. Angew. Chem. Int. Ed. 2007; 46: 761
- 54b Stephenson NA, Zhu J, Gellman SH, Stahl SS. J. Am. Chem. Soc. 2009; 131: 10003
- 54c Ma Y, Zhang L, Luo Y, Nishiura M, Hou Z. J. Am. Chem. Soc. 2017; 139: 12434
- 55a Enthaler S, Weidauer M. Chem. Eur. J. 2012; 18: 1910
- 55b Enthaler S, Weidauer M. ChemSusChem 2012; 5: 1195
- 55c Enthaler S. Catal. Lett. 2014; 144: 850
- 56 Feghali E, Cantat T. ChemSusChem 2015; 8: 980
- 57 Biberger T, Makai S, Lian Z, Morandi B. Angew. Chem. Int. Ed. 2018; 57: 6940
- 58 Wang H, Zhao Y, Zhang F, Wu Y, Li R, Xiang J, Wang Z, Han B, Liu Z. Angew. Chem. Int. Ed. 2020; 59: 11850
- 59 Hartmann D, Braner S, Greb L. Chem. Commun. 2021; 57: 8572
- 60a Weicker SA, Stephan DW. Bull. Chem. Soc. Jpn. 2015; 88: 1003
- 60b Caputo CB, Stephan DW. In The Chemical Bond III: 100 Years Old and Getting Stronger . Mingos DM. P. Springer International; Cham: 2017: 1
- 60c Weicker SA, Stephan DW. Chem. Eur. J. 2015; 21: 13027
- 60d Herrington TJ, Ward BJ, Doyle LR, McDermott J, White AJ. P, Hunt PA, Ashley AE. Chem. Commun. 2014; 50: 12753
- 60e Scott DJ, Phillips NA, Sapsford JS, Deacy AC, Fuchter MJ, Ashley AE. Angew. Chem. Int. Ed. 2016; 55: 14738
- 60f Dureen MA, Stephan DW. J. Am. Chem. Soc. 2009; 131: 8396
- 60g Inés B, Holle S, Goddard R, Alcarazo M. Angew. Chem. Int. Ed. 2010; 49: 8389
- 60h Whittell GR, Balmond EI, Robertson AP. M, Patra SK, Haddow MF, Manners I. Eur. J. Inorg. Chem. 2010; 2010: 3967
- 60i Schäfer A, Reißmann M, Schäfer A, Saak W, Haase D, Müller T. Angew. Chem. Int. Ed. 2011; 50: 12636
- 61a Geier SJ, Stephan DW. J. Am. Chem. Soc. 2009; 131: 3476
- 61b Johnstone TC, Wee GN. J. H, Stephan DW. Angew. Chem. Int. Ed. 2018; 57: 5881
- 62a Spies P, Erker G, Kehr G, Bergander K, Fröhlich R, Grimme S, Stephan DW. Chem. Commun. 2007; 5072
- 62b Appelt C, Westenberg H, Bertini F, Ehlers AW, Slootweg JC, Lammertsma K, Uhl W. Angew. Chem. Int. Ed. 2011; 50: 3925
- 62c Kehr G, Schwendemann S, Erker G. In Frustrated Lewis Pairs I: Uncovering and Understanding . Erker G, Stephan DW. Springer; Berlin: 2013: 45
- 62d Waerder B, Pieper M, Körte LA, Kinder TA, Mix A, Neumann B, Stammler H.-G, Mitzel NW. Angew. Chem. Int. Ed. 2015; 54: 13416
- 62e Fontaine F.-G, Rochette É. Acc. Chem. Res. 2018; 51: 454
- 62f Holtkamp P, Friedrich F, Stratmann E, Mix A, Neumann B, Stammler H.-G, Mitzel NW. Angew. Chem. Int. Ed. 2019; 58: 5114
- 62g Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskelä M, Repo T, Pyykkö P, Rieger B. J. Am. Chem. Soc. 2008; 130: 14117
- 62h Mo Z, Kolychev EL, Rit A, Campos J, Niu H, Aldridge S. J. Am. Chem. Soc. 2015; 137: 12227
- 63a Stephan DW, Greenberg S, Graham TW, Chase P, Hastie JJ, Geier SJ, Farrell JM, Brown CC, Heiden ZM, Welch GC, Ullrich M. Inorg. Chem. 2011; 50: 12338
- 63b Lathem AP, Rinne BL, Maldonado MA, Heiden ZM. Eur. J. Inorg. Chem. 2017; 2017: 2032
- 63c Heshmat M, Liu L, Ensing B. In Frustrated Lewis Pairs . Slootweg JC, Jupp AR. Springer International; Cham: 2021. Chap. 5, 167
- 64 Hartmann D, Strunden T, Greb L. Inorg. Chem. 2022; 61: 15693
- 65 Kira M, Sato K, Sakurai H. J. Org. Chem. 1987; 52: 948
- 66 Broere DL. J, Plessius R, van der Vlugt JI. Chem. Soc. Rev. 2015; 44: 7011
- 67a Jupp AR. Dalton. Trans. 2022; 51: 10681
- 67b Grimme S, Kruse H, Goerigk L, Erker G. Angew. Chem. Int. Ed. 2010; 49: 1402
- 68 Ruppert H, Greb L. Organometallics 2020; 39: 4340
- 69 Pan B, Gabbaï FP. J. Am. Chem. Soc. 2014; 136: 9564
- 70 Kobayashi S, Ogawa C. Chem. Eur. J. 2006; 12: 5954
- 71 Bevillard P. Bull. Soc. Chim. Fr. 1954; 21: 296
- 72a Clark HC, Willis CJ. J. Am. Chem. Soc. 1962; 84: 898
- 72b Graddon DP, Rana BA. J. Organomet. Chem. 1979; 165: 157
- 72c Brauer DJ, Bürger H, Eujen R. Angew. Chem. Int. Ed. 1980; 19: 836
- 72d Pelzer S, Neumann B, Stammler H.-G, Ignat’ev N, Hoge B. Chem. Eur. J. 2016; 22: 3327
- 72e Pelzer S, Neumann B, Stammler H.-G, Ignat’ev N, Hoge B. Chem. Eur. J. 2016; 22: 16460
- 72f Kinder TA, Pior R, Blomeyer S, Neumann B, Stammler H.-G, Mitzel NW. Chem. Eur. J. 2019; 25: 5899
- 73 Henry AT, Cosby TP. L, Boyle PD, Baines KM. Dalton Trans. 2021; 50: 15906
- 74a Anschütz L, Broeker W. Ber. Dtsch. Chem. Ges. 1926; 59: 2848
- 74b Gross H, Rieche A, Höft E. Chem. Ber. 1961; 94: 544
- 74c Gross H, Gloede J. Chem. Ber. 1963; 96: 1387
- 74d Gloede J. Z. Chem. 1982; 22: 126
- 75a Wong CY, Kennepohl DK, Cavell RG. Chem. Rev. 1996; 96: 1917
- 75b Osman FH, El-Samahy FA. Chem. Rev. 2002; 102: 629
- 75c Williams NA. In Comprehensive Heterocyclic Chemistry III, Vol. 12. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008
- 75d Hirai M, Gabbaï FP. Chem. Sci. 2014; 5: 1886
- 75e Hirai M, Gabbaï FP. Angew. Chem. Int. Ed. 2015; 54: 1205
- 75f Tofan D, Gabbaï FP. Chem. Sci. 2016; 7: 6768
- 75g Yang M, Tofan D, Chen C.-H, Jack KM, Gabbaï FP. Angew. Chem. Int. Ed. 2018; 57: 13868
- 76a Lacour J, Ginglinger C, Grivet C, Bernardinelli G. Angew. Chem. Int. Ed. 1997; 36: 608
- 76b Lacour J. C. R. Chim. 2010; 13: 985
- 77a Siu PW, Gates DP. Organometallics 2009; 28: 4491
- 77b Siu PW, Hazin K, Gates DP. Chem. Eur. J. 2013; 19: 9005
- 77c Riddlestone IM, Kraft A, Schaefer J, Krossing I. Angew. Chem. Int. Ed. 2018; 57: 13982
- 78 Terada M, Kouchi M. Tetrahedron 2006; 62: 401
- 79 Roth D, Stirn J, Stephan DW, Greb L. J. Am. Chem. Soc. 2021; 143: 15845
- 80 De Vries TS, Prokofjevs A, Vedejs E. Chem. Rev. 2012; 112: 4246
- 81 Bähr S, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 52
- 82a Légaré M.-A, Courtemanche M.-A, Rochette É, Fontaine F.-G. Science 2015; 349: 513
- 82b Chernichenko K, Lindqvist M, Kótai B, Nieger M, Sorochkina K, Pápai I, Repo T. J. Am. Chem. Soc. 2016; 138: 4860
- 82c Raţ CI, Soran A, Varga RA, Silvestru C. Adv. Organomet. Chem. 2018; 70: 233
- 82d Soltani Y, Fontaine F.-G. In: Frustrated Lewis Pairs Jupp A. R.; Springer International, Cham, 2021; 113.
- 83a Moonen K, Laureyn I, Stevens CV. Chem. Rev. 2004; 104: 6177
- 83b Queffélec C, Petit M, Janvier P, Knight DA, Bujoli B. Chem. Rev. 2012; 112: 3777
- 84 Schug KA, Lindner W. Chem. Rev. 2005; 105: 67
- 85 Roth D, Thorwart T, Douglas C, Greb L. Chem. Eur. J. 2023; 29: e202203024
- 86 In a series of early EPR studies, the spin–spin couplings of transient open-shell silicon catecholates were analyzed. No further characterization or isolation was attempted and contributions of excited spin states were not considered.9
- 87a Prokof’ev AI, Prokof’eva TI, Bubnov NN, Solodovnikov SP, Belostotskaya IS, Ershov VV, Kabachnik MI. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1978; 27: 1726
- 87b Prokof’ev AI, Prokof’eva TI, Belostotskaya IS, Bubnov NN, Solodovnikov SP, Ershov VV, Kabachnik MI. Tetrahedron 1979; 35: 2471
- 87c Chekalov AK, Prokof’ev AI, Bubnov NN, Solodovnikov SP, Zhdanov AA, Kabachnik MI. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1981; 30: 2064
- 88a Pierpont CG, Buchanan RM. Coord. Chem. Rev. 1981; 38: 45
- 88b Zanello P, Corsini M. Coord. Chem. Rev. 2006; 250: 2000
- 88c Broere DL. J, Plessius R, van der Vlugt JI. Chem. Soc. Rev. 2015; 44: 6886
- 88d Gatteschi D. Curr. Opin. Solid State Mater. Sci. 1996; 1: 192
- 88e Osamu S, Jun T, Yuan-Zhu Z. Angew. Chem. Int. Ed. 2007; 46: 2152
- 89a Itkis ME, Chi X, Cordes AW, Haddon RC. Science 2002; 296: 1443
- 89b Pal SK, Itkis ME, Tham FS, Reed RW, Oakley RT, Haddon RC. Science 2005; 309: 281
- 89c Herzog S, Krebs F. Naturwissenschaften (1913) 1963; 50: 330
- 89d Wulf E, Herzog S. Z. Anorg. Allg. Chem. 1972; 387: 81
- 89e England J, Wieghardt K. Inorg. Chem. 2013; 52: 10067
- 89f Peloquin DM, Schmedake TA. Coord. Chem. Rev. 2016; 323: 107
- 89g Summerscales OT, Myers TW, Berben LA. Organometallics 2012; 31: 3463
- 89h Chegerev MG, Piskunov AV. Russ. J. Coord. Chem. 2018; 44: 258
- 89i Pal SK, Itkis ME, Tham FS, Reed RW, Oakley RT, Haddon RC. J. Am. Chem. Soc. 2008; 130: 3942
- 89j Sarkar A, Tham FS, Haddon RC. J. Mater. Chem. 2011; 21: 1574
- 90 Tsuji Y, Hoffmann R, Strange M, Solomon GC. Proc. Natl. Acad. Sci. U. S. A. 2016; 113: E413
- 91 Morita Y, Nishida S, Murata T, Moriguchi M, Ueda A, Satoh M, Arifuku K, Sato K, Takui T. Nat. Mater. 2011; 10: 947
- 92 Smith MB, Michl J. Chem. Rev. 2010; 110: 6891
- 93 Dediu VA, Hueso LE, Bergenti I, Taliani C. Nat. Mater. 2009; 8: 707
- 94a Rajca A. Adv. Phys. Org. Chem. 2005; 40: 153
- 94b Abe M. Chem. Rev. 2013; 113: 7011
- 94c Miller JS, Epstein AJ. Angew. Chem. Int. Ed. 1994; 33: 385
- 95 Heckmann A, Lambert C. Angew. Chem. Int. Ed. 2012; 51: 326
- 96a Darago LE, Aubrey ML, Yu CJ, Gonzalez MI, Long JR. J. Am. Chem. Soc. 2015; 137: 15703
- 96b Halis S, Inge AK, Dehning N, Weyrich T, Reinsch H, Stock N. Inorg. Chem. 2016; 55: 7425
- 96c Ziebel ME, Darago LE, Long JR. J. Am. Chem. Soc. 2018; 140: 3040
- 96d Reed WR, Dunstan MA, Gable RW, Phonsri W, Murray KS, Mole RA, Boskovic C. Dalton Trans. 2019; 48: 15635
- 96e Ziebel ME, Gaggioli CA, Turkiewicz AB, Ryu W, Gagliardi L, Long JR. J. Am. Chem. Soc. 2020; 142: 2653
- 96f Kitagawa S, Kawata S. Coord. Chem. Rev. 2002; 224: 11
- 97 Greb L. Eur. J. Inorg. Chem. 2021; e202100871