Subscribe to RSS
DOI: 10.1055/a-2107-4416
Developing Organometallic Nucleophilic Reagents Via Photoredox Catalysis
P.G.C. acknowledges the Ministero dell’Istruzione, dell’Università e della Ricerca project (PRIN 2017 ID: 20174SYJAF) SURSUMCAT ‘Raising up Catalysis for Innovative Developments’ for financial support of this research and A.G. and P.C. acknowledge the University of Bologna. P.G.C. and A.G. thanks the European Union’s Horizon 2020 research and innovation program under grant agreement No. 951996 (BioMass4Synthons).
Abstract
The addition of organometallic reagents to the carbonyl group represents a key transformation, both in academia and industry. Most of these transformations rely on a mechanism in which accessible and reactive halides are transformed into the corresponding nucleophilic organometallic reactive compounds through a redox mechanism, using a metal (Cr, Mg, In, etc.) in low oxidation state, by electron transfer. With the advent of photoredox catalysis, the formation of radicals, through oxidation or reduction of suitable and tailored organic precursors, was merged with transition metal catalysis. By radical-to-polar crossover (RPCO), a radical metal is combined with an organic radical to produce, via radical-radical trapping, a polar nucleophilic organometallic reagent. Using dual photoredox catalysis (metallaphotoredox catalysis), a reactive organometallic reagent can be prepared, avoiding the use of metals in low oxidation state. Herein, in addition to the description of the results obtained by our group and the contributions of others on the connection between carbonyl addition and radical-based photochemistry, we provide core guidance for further synthetic developments. We anticipate that extending the photoredox dual strategy beyond the Barbier reactions described here, taming less-activated carbonyls, studying other important electrophiles, will soon realize important breakthroughs.
1 Introduction
2 Photoredox Catalysis: A Survival Guide for the ‘Photo-Curious’
3 Chromium Nucleophilic Organometallic Reagents
3.1 Allylation of Aldehydes
3.2 Allylation of Aldehydes via Dienes
3.3 Propargylation of Aldehydes via 1,3-Enynes
3.4 Alkenylation of Aldehydes
3.5 Alkylation of Aldehydes
3.6 Enantioselective Chromium-Mediated Photoredox Reactions
4 Titanium Nucleophilic Organometallic Reagents
4.1 Allylation Reactions
4.2 Propargylation Reactions
4.3 Allylation Reactions via Dienes
4.4 Benzylation Reactions
4.5 Alkylation Reactions
5. Cobalt Nucleophilic Organometallic Reagents
5.1 Allylation Reactions
6 Conclusion
Key words
photoredox catalysis - dual catalysis - radical-to-polar crossover - carbonyl electrophiles - photoredox Nozaki–Hiyama–Kishi - Ti(III) reactionsPublication History
Received: 05 May 2023
Accepted after revision: 07 June 2023
Accepted Manuscript online:
07 June 2023
Article published online:
17 July 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Brown Ripin DH, Brown AR. Practical Synthetic Organic Chemistry: Reactions, Principles, and Techniques, 2nd ed., Chap. 12. Caron S. John Wiley & Sons; Hoboken NJ: 2020: 591-620
- 2 Noyori R, Kitamura M. Angew. Chem., Int. Ed. Engl. 1991; 30: 49
- 3 Nair SK, Rocke BN, Sutton S. Lithium, Magnesium, and Copper: Contemporary Applications of Organometallic Chemistry in the Pharmaceutical Industry. In RSC Drug Discovery No. 53 - Synthetic Methods in Drug Discovery: Volume 2, Chap. 11. Blakemore DC, Doyle PM, Fobian YM. RSC; London: 2016: 1-74
- 4 Yan M, Lo J, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 5 Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 6 Pitzer L, Schäfers F, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 8752
- 7 Leifert D, Studer A. Angew. Chem. Int. Ed. 2020; 59: 74
- 8 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
- 9 Wang L, Lear JM, Rafferty SM, Fosu SC, Nagib DA. Science 2018; 362: 225
- 10 Pitzer L, Sandfort F, Strieth-Kalthoff F, Glorius F. J. Am. Chem. Soc. 2017; 139: 13652
- 11 Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
- 12 Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10915
- 13 Hu A, Chen Y, Guo J.-J, Yu N, An Q, Zuo Z. J. Am. Chem. Soc. 2018; 140: 13580
- 14 Ju T, Fu Q, Ye J.-H, Zhang Z, Liao L.-L, Yan S.-S, Tian X.-Y, Luo S.-P, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2018; 57: 13897
- 15 Donabauer K, Maity M, Berger AL, Huff GS, Crespi S, König B. Chem. Sci. 2019; 10: 5162
- 16 Fürstner A. Chem. Rev. 1999; 99: 991
- 17 Matos JL. M, Vásquez-Céspedes S, Gu J, Oguma T, Shenvi RA. J. Am. Chem. Soc. 2018; 140: 16976
- 18 Ni S, Padial NM, Kingston C, Vantourout JC, Schmitt DC, Edwards JT, Kruszyk MM, Merchant RR, Mykhailiuk PK, Sanchez BB, Yang S, Perry MA, Gallego GM, Mousseau JJ, Collins MR, Cherney RJ, Lebed PS, Chen JS, Qin T, Baran PS. J. Am. Chem. Soc. 2019; 141: 6726
- 19 Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 12349
- 20 Hargaden GC, Guiry PJ. Adv. Synth. Catal. 2007; 349: 2407
- 21 Huang H.-M, Bellotti P, Glorius F. Chem. Soc. Rev. 2020; 49: 6186
- 22 Gao Y, Hill DE, Hao W, McNicholas BJ, Vantourout JC, Hadt RG, Reisman SE, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2021; 143: 9478
- 23 Schwarz JL, Schäfers F, Tlahuext-Aca A, Lückemeier L, Glorius F. J. Am. Chem. Soc. 2018; 140: 12705
- 24 Ciamician G. Science 1912; 36: 385
- 25 Balzani V, Bergamini G, Ceroni P. Angew. Chem. Int. Ed. 2015; 54: 11320
- 26 Turro NJ, Ramamurthy V, Scaiano JC. Modern Molecular Photochemistry of Organic Molecules . University Science Books; Mill Valley: 2010
- 27 Welin ER, Le C, Arias-Rotondo DM, McCusker JK, Macmillan DW. C. Science 2017; 355: 380
- 28 Strieth-Kalthoff F, James MJ, Teders M, Pitzer L, Glorius F. Chem. Soc. Rev. 2018; 47: 7190
- 29 Balzani V, Ceroni P, Juris A. Photochemistry and Photophysics. Concepts, Research, Applications. Wiley-VCH; Weinheim: 2014: 153-157
- 30 Itoh T. Chem. Rev. 2012; 112: 4541
- 31 https://macmillan.princeton.edu/wp-content/uploads/Merck-Photocatalysis-Chart.pdf (accessed Jun 21, 2023)
- 32a Bryden MA, Zysman-Colman E. Chem. Soc. Rev. 2021; 50: 7587
- 32b Hockin BM, Li C, Robertson N, Zysman-Colman E. Catal. Sci. Technol. 2019; 9: 889
- 32c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 32d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 33 Buzzetti L, Crisenza GE. M, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
- 34 Piotrowiak P. Chem. Soc. Rev. 1999; 28: 143
- 35 Stern O, Volmer M. Z. Phys. 1919; 20: 183
- 36 Gehlen MH. J. Photochem. Photobiol., C 2020; 42: 100338
- 37 Genovese D, Cingolani M, Rampazzo E, Prodi L, Zaccheroni N. Chem. Soc. Rev. 2021; 50: 8414
- 38 Balzani V, Ceroni P, Juris A. Photochemistry and Photophysics. Concepts, Research, Applications. Wiley-VCH; Weinheim: 2014: 349-353
- 39 Ji Y, DiRocco DA, Hong MC, Wismer MK, Reibarkh M. Org. Lett. 2018; 20: 2156
- 40 Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
- 41 The Theoretical Minimum is a series of Stanford Continuing Studies courses taught by world renowned physicist Leonard Susskind. See: https://theoreticalminimum.com/ (accessed Jun 21, 2023)
- 42 Gil A, Albericio F, Álvarez M. Chem. Rev. 2017; 117: 8420
- 43 For a review see: Bauer A. Top. Heterocycl. Chem. 2016; 44: 209
- 44 Cp2ZrCl2 instead of the more common TMSCl was firstly reported by Kishi, see: Namba K, Wang J, Cui S, Kishi Y. Org. Lett. 2005; 7: 5421
- 45 Egorova KS, Ananikov VP. Organometallics 2017; 36: 4071
- 46 Katayama K, Mitsunuma H, Kanai M. Synthesis 2022; 54: 1684
- 47 Kochi JK, Powers JW. J. Am. Chem. Soc. 1970; 92: 137
- 48 See ref. 22: Baran, Blackmond, Reisman, and co-workers have reported the potential as Fc+/Fc0. Here, we have used the factor of conversion Fc+/Fc0 = 4.0 vs. SCE.
- 49 Schäfers F, Quach L, Schwarz JL, Saladrigas M, Daniliuc CG, Glorius F. ACS Catal. 2020; 10: 11841
- 50 Monos TM, McAtee RC, Stephenson CR. J. Science 2018; 361: 1369
- 51 Calogero F, Potenti S, Magagnano G, Mosca G, Gualandi A, Marchini M, Ceroni P, Cozzi PG. Eur. J. Org. Chem. 2022; e202200350
- 52 Lee H, Kim KT, Kim M, Kim C. Catalysts 2022; 12: 227
- 53 Irie Y, Chen H, Fuse H, Mitsunuma H, Kanai M. Adv. Synth. Catal. 2022; 364: 3378
- 54 Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
- 55 Johnson AW. Invitation to Organic Chemistry . Jones and Bartlett Publishers; Sudbury MA: 1999
- 56a Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
- 56b Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
- 56c Huang W, Cheng X. Synlett 2017; 28: 148
- 56d Wang P.-Z, Chen J.-R, Xiao W.-J. Org. Biomol. Chem. 2019; 17: 6936
- 56e Ye S, Wu J. Acta Chim. Sin. 2019; 77: 814
- 56f Chen W, Liu Z, Tian J, Li J, Ma J, Cheng X, Li G. J. Am. Chem. Soc. 2016; 138: 12312
- 56g Nakajima K, Nojima S, Nishibayashi Y. Angew. Chem. Int. Ed. 2016; 55: 14106
- 56h Gutiérrez-Bonet Á, Tellis JC, Matsui JK, Vara BA, Molander GA. ACS Catal. 2016; 6: 8004
- 56i Buzzetti L, Prieto A, Roy SR, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 15039
- 57 Schwarz JL, Huang H.-M, Paulisch TO, Glorius F. ACS Catal. 2020; 10: 1621
- 58 Xiong Y, Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
- 59 Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
- 60 Lin S, Chen Y, Yan H, Liu Y, Sun Y, Hao E, Shi C, Zhang D, Zhu N, Shi L. Org. Lett. 2021; 23: 8077 ; and supporting information
- 61 Kammer LM, Badir SO, Hu R.-M, Molander GA. Chem. Sci. 2021; 12: 5450
- 62 Murarka S. Adv. Synth. Catal. 2018; 360: 1735
- 63 Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
- 64a Okada K, Okamoto K, Morita N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
- 64b Okada K, Okamoto K, Oda M. J. Am. Chem. Soc. 1988; 110: 8736
- 65 Schwarz J, König B. Green Chem. 2016; 18: 4743
- 66 Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
- 67a Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
- 67b Roy R, Saha S. RSC Adv. 2018; 8: 31129
- 68a Miller KM, Luanphaisarnnont T, Molinaro C, Jamison TF. J. Am. Chem. Soc. 2004; 126: 4130
- 68b Patman RL, Williams VM, Bower JF, Krische MJ. Angew. Chem. Int. Ed. 2008; 47: 5220
- 68c Geary LM, Woo SK, Leung JC, Krische MJ. Angew. Chem. Int. Ed. 2012; 51: 2972
- 68d Meng F, Haeffner F, Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 11304
- 68e Yang Y, Perry IB, Lu G, Liu P, Buchwald SL. Science 2016; 353: 144
- 68f Manna S, Dherbassy Q, Perry GJ. P, Procter DJ. Angew. Chem. Int. Ed. 2020; 59: 4879
- 69a Wang F, Wang D, Zhou Y, Liang L, Lu R, Chen P, Lin Z, Liu G. Angew. Chem. Int. Ed. 2018; 57: 7140
- 69b Zhu X, Deng W, Chiou M.-F, Ye C, Jian W, Zeng Y, Jiao Y, Ge L, Li Y, Zhang X, Bao H. J. Am. Chem. Soc. 2019; 141: 548
- 69c Zhang K.-F, Bian KJ, Li C, Sheng J, Li Y, Wang X.-S. Angew. Chem. Int. Ed. 2019; 58: 5069
- 69d Muhammad MT, Jiao Y, Ye C, Chiou M.-F, Israr M, Zhu X, Li Y, Wen Z, Studer A, Bao H. Nat. Commun. 2020; 11: 416
- 70 Huang H.-M, Bellotti P, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2021; 60: 2464
- 71 Abonia R, Insuasty D, Laali KK. Molecules 2023; 28: 3379
- 72 Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J. Am. Chem. Soc. 1986; 108: 6048
- 73 Jin H, Uenishi J, Christ JW, Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
- 74 Liu Y, Lin S, Zhang D, Song B, Jin Y, Hao E, Shi L. Org. Lett. 2022; 24: 3331
- 75a Durandetti M, Périchon J. Synthesis 2006; 1542
- 75b Durandetti M, Gosmini C, Périchon J. Tetrahedron 2007; 63: 1146
- 76 Jung J, Kim J, Park G, You Y, Cho EJ. Adv. Synth. Catal. 2016; 358: 74
- 77 Becke F, Wiegeleben P, Rüffer T, Wagner C, Boese R, Bläser D, Steinborn D. Organometallics 1998; 17: 475
- 78 Schwarz JL, Kleinmans R, Paulisch TO, Glorius F. J. Am. Chem. Soc. 2020; 142: 2168
- 79a Luo J, Zhang J. ACS Catal. 2016; 6: 873
- 79b Tlili A, Lakhdar S. Angew. Chem. Int. Ed. 2021; 60: 19526
- 80 Dutta S, Erchinger JE, Schäfers F, Das A, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2022; 61: e202212136
- 81 Alfonzo E, Hande SM. ACS Catal. 2020; 10: 12590
- 82 Rossolini T, Ferko B, Dixon DJ. Org. Lett. 2019; 21: 6668
- 83 Hirao Y, Katayama Y, Mitsunuma H, Kanai M. Org. Lett. 2020; 22: 8584
- 84 Gao Y, Yang C, Bai S, Liu X, Wu Q, Wang J, Jiang C, Qi X. Chem 2020; 6: 675
- 85 The value is referred to Cp2ZrCl2, see: Aida K, Hirao M, Funabashi A, Sugimura N, Ota E, Yamaguchi J. Chem 2022; 8: 1762
- 86 Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 87 Yahata K, Sakurai S, Hori S, Yoshioka S, Kaneko Y, Hasegawa K, Akai S. Org. Lett. 2020; 22: 1199
- 88 Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
- 89 Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem. Sci. 2019; 10: 3459
- 90 Tanabe S, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 12374
- 91a Fuse H, Kojima M, Mitsunuma H, Kanai M. Org. Lett. 2018; 20: 2042
- 91b Fuse H, Mitsunuma H, Kanai M. J. Am. Chem. Soc. 2020; 142: 4493
- 92 Schäfers F, Dutta S, Kleinmans R, Mück-Lichtenfeld C, Glorius F. ACS Catal. 2022; 12: 12281
- 93 Liu R, Chia SP. M, Goh YY, Cheo HW, Fan B, Li R, Zhou R, Wu J. Eur. J. Org. Chem. 2020; 1459
- 94 Fermi A, Gualandi A, Bergamini G, Cozzi PG. Eur. J. Org. Chem. 2020; 6955
- 95a Justicia J, Oller-López JL, Campaña AG, Oltra JE, Cuerva JM, Buñuel E, Càrdenas DJ. J. Am. Chem. Soc. 2005; 127: 14911
- 95b Friedrich J, Dolg M, Gansäuer A, Geich-Gimbel D, Lauterbach T. J. Am. Chem. Soc. 2005; 127: 7071
- 95c Friedrich J, Walczak K, Dolg M, Piestert F, Lauterbach T, Worgull D, Gansäuer A. J. Am. Chem. Soc. 2008; 130: 1788
- 95d Gansäuer A, Kube C, Daasbjerg K, Sure R, Grimme S, Fianu GD, Sadasivam DV, Flowers RA. J. Am. Chem. Soc. 2014; 136: 1663
- 95e Funken N, Mühlhaus F, Gansäuer A. Angew. Chem. Int. Ed. 2016; 55: 12030
- 95f Mühlhaus F, Weißbarth H, Dahmen T, Schnakenburg G, Gansäuer A. Angew. Chem. Int. Ed. 2019; 58: 14208
- 96a McCallum T, Wu X, Lin S. J. Org. Chem. 2019; 84: 14369
- 96b Manßen M, Schafer LL. Chem. Soc. Rev. 2020; 49: 6947
- 96c Wu X, Chang Y, Lin S. Chem 2022; 8: 1805
- 97 Gansäuer A, Bluhm H. Chem. Rev. 2000; 100: 2771
- 98 Zhang Z, Richrath RB, Gansäuer A. ACS Catal. 2019; 9: 3208
- 99 Lin S, Chen Y, Li F, Shi C, Shi L. Chem. Sci. 2020; 11: 839
- 100 Gualandi A, Calogero F, Mazzarini M, Guazzi S, Fermi A, Bergamini G, Cozzi PG. ACS Catal. 2020; 10: 3857
- 101 For a review of organic dyes used in synergistic photoredox metal-promoted reactions, see: Gualandi A, Anselmi M, Calogero F, Potenti S, Bassan E, Ceroni P, Cozzi PG. Org. Biomol. Chem. 2021; 19: 3527
- 102 Zhang Z, Hilche T, Slak D, Rietdijk NR, Oloyede UN, Flowers RA, Gansäuer A. Angew. Chem. Int. Ed. 2020; 59: 9355
- 103 Li F.-S, Chen Y.-Q, Lin S.-J, Shi C.-Z, Li X.-Y, Sun Y.-C, Guo Z.-W, Shi L. Org. Chem. Front. 2020; 7: 3434
- 104 Calogero F, Gualandi A, Di Matteo M, Potenti S, Fermi A, Bergamini G, Cozzi PG. J. Org. Chem. 2021; 86: 7002
- 105a Huang H.-M, Koy M, Serrano E, Pflüger PM, Schwarz JL, Glorius F. Nat. Catal. 2020; 3: 393
- 105b Huang H.-M, Bellotti P, Pflüger PM, Schwarz JL, Heidrich B, Glorius F. J. Am. Chem. Soc. 2020; 142: 10173
- 106 Li F, Lin S, Chen Y, Shi C, Yan H, Li C, Wu C, Lin L, Duan C, Shi L. Angew. Chem. Int. Ed. 2021; 60: 1561
- 107 Peng X, Hirao Y, Yabu S, Sato H, Higashi M, Akai T, Masaoka S, Mitsunuma H, Kanai M. J. Org. Chem. 2023; 88: 6333
- 108 Wayner DD. M, McPhee DJ, Griller D. J. Am. Chem. Soc. 1988; 110: 132
- 109 Yamane M, Kanzaki Y, Mitsunuma H, Kanai M. Org. Lett. 2022; 24: 1486
- 110 Lutter FH, Graßl S, Grokenberger L, Hofmayer MS, Chen Y.-H, Knochel P. ChemCatChem 2019; 11: 5188
- 111 Kojima K, Matsunaga S. Trends Chem. 2020; 2: 410
- 112 Hebrard F, Kalck P. Chem. Rev. 2009; 109: 4272
- 113 Chirik PJ. Acc. Chem. Res. 2015; 48: 1687
- 114a Gualandi A, Rodeghiero G, Perciaccante R, Jansen TP, Moreno-Cabrerizo C, Foucher C, Marchini M, Ceroni P, Cozzi PG. Adv. Synth. Catal. 2021; 363: 1105
- 114b Pinosa E, Bassan E, Cetin S, Villa M, Potenti S, Calogero F, Gualandi A, Fermi A, Ceroni P, Cozzi PG. J. Org. Chem. 2023; 88: 6390
- 114c Cristòfol À, Limburg B, Kleij AW. Angew. Chem. Int. Ed. 2021; 60: 15266
- 114d Xue S, Cristòfol À, Limburg B, Zeng Q, Kleij AW. ACS Catal. 2022; 12: 3651
- 114e Limburg B, Cristòfol À, Kleij AW. J. Am. Chem. Soc. 2022; 144: 10912
- 114f Shi C, Li F, Chen Y, Lin S, Hao E, Guo Z, Wosqa UT, Zhang D, Shi L. ACS Catal. 2021; 11: 2992
- 115 Qian X, Auffrant A, Felouat A, Gosmini C. Angew. Chem. Int. Ed. 2011; 50: 10402
- 116 Zhang D, Li H, Guo Z, Chen Y, Yan H, Ye Z, Zhang F, Lu B, Hao E, Shi L. Green Chem. 2022; 24: 9027
- 117 Recently, the Shi group reported a photoredox cobalt-mediated hydrogen atom transfer reaction starting from allenes. The formed allylic radical is intercepted by Cp2Ti(III) to form an allyltitanium, see ref. 11 and: Yan H, Liao Q, Chen Y, Gurzadyan GG, Lu B, Wu C, Shi L. Angew. Chem. Int. Ed. 2023; 62: e202302483
- 118 Recently, we have found conditions for a Reformatsky photoredox-type of reaction promoted by Cp2TiCl2: Pinosa, E.; Gualandi, A.; Cozzi, P. G.; Calogero, F. Eur. J. Org. Chem. 2023, submitted and in revision
- 119 For an enantioselective titanium photoredox pinacol coupling, see: Calogero F, Magagnano G, Potenti S, Pasca F, Fermi A, Gualandi A, Ceroni P, Bergamini G, Cozzi PG. Chem. Sci. 2022; 13: 5973
For selected reviews on the use of Hantzsch esters as alkyl radical precursor in photocatalysis, see:
For selected publications, in which Hantzsch esters are employed as alkyl radical precursor in photochemistry, see:
For selected examples:
For the first use of 4CzIPN as photocatalyst in dual catalysis, see:
For a review of TADF dyes in photoredox catalysis, see: