Subscribe to RSS
DOI: 10.1055/a-2107-1861
Mechanische Kreislaufunterstützung im Schock
Mechanical Circulatory Support in ShockZusammenfassung
Mechanische Kreislaufunterstützungssysteme (engl. Mechanical Circulatory Support, MCS) haben in den letzten Jahren eine zunehmende Bedeutung in der akutmedizinischen Therapie des kritisch kranken Patienten im Schock erlangt. Aktuell stehen in Europa verschiede Systeme zur Verfügung, die sich in Wirkweise und Einsatzgebiet signifikant unterscheiden. Neben den MCS-Charakteristika und der Zentrumsexpertise sind aber auch Patientencharakteristika für die Auswahl des richtigen MCS zu beachten. Unterschiedliche Schockformen fordern eine differenzierte Therapie, je nach Ätiologie des Schocks und seiner hämodynamischen Akzentuierung (so braucht z. B. ein infarktbedingter kardiogener Schock mit führendem Linksherzversagen eine andere Therapie als ein infarktbedingter kardiogener Schock mit führendem Rechtsherzversagen). Die Auswahl des jeweiligen Herzunterstützungssystems richtet sich nach der Pathophysiologie der zugrunde liegenden Erkrankung. Bisweilen sind Kombinationen von mehreren Unterstützungssystemen erforderlich. Dieser Übersichtsartikel diskutiert die verschiedenen Systeme (extrakorporale Membranoxygenierung, intraaortale Ballonpumpe, Mikroaxillarpumpe/perkutanes linksventrikuläres Unterstützungssystem, perkutanes rechtsventrikuläres Unterstützungssystem) und deren Einsatzmöglichkeit im Kontext der verschiedenen Schockformen.
Abstract
In recent years, mechanical circulatory support (MCS) systems have become increasingly important in the acute medical treatment of critically ill patients in shock. Currently, various systems are available in Europe, which differ significantly in their mode of action and field of application. In addition to MCS characteristics and center expertise, patient characteristics must also be taken into account when selecting the right MCS. Different types of shock require differentiated therapy, depending on the etiology of the shock and its hemodynamic accentuation (e.g., infarct-related cardiogenic shock with leading left heart failure requires different therapy than infarct-related cardiogenic shock with leading right heart failure). The selection of the particular cardiac support system depends on the pathophysiology of the underlying disease. At times, combinations of multiple support systems are required. This review article discusses the different systems (extracorporeal membrane oxygenation, intraaortic balloon pump, microaxillary pump/percutaneous left ventricular support system, percutaneous right ventricular support system) and their potential use in the context of the different types of shock.
-
Zur kurzfristigen Kreislaufunterstützung sind die venoarterielle ECMO, TandemHeart, Impella und die intraaortale Ballonpumpe verfügbar, wobei letztere nach negativen randomisierten Studien in den Hintergrund tritt.
-
Die VA-ECMO bietet als einziges System einen kompletten kardialen Shunt. Sowohl TandemHeart als auch Impella haben ihren Ansaugpunkt im linken Herzen.
-
Aufgrund der Nachlasterhöhung durch VA-ECMO-Therapie sollte frühzeitig an die Entlastung des linken Ventrikels (z. B. mittels Impella) gedacht werden.
Schlüsselwörter
mechanische Kreislaufunterstüzung - Schock - ECMO - Mikroaxillarpumpe - perkutanes linksventrikuläres Unterstützungssystem - perkutanes rechtsventrikuläres UnterstützungssystemKeywords
mechanical circulatory support - shock - microaxial support pump - percutaneous right ventricular assist device - percutaneous left ventricular assist device - ECMOPublication History
Article published online:
13 October 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Combes A, Price S, Slutsky AS. et al. Temporary circulatory support for cardiogenic shock. Lancet 2020; 396: 199-212 DOI: 10.1016/S0140-6736(20)31047-3. (PMID: 32682486)
- 2 Bernhardt AM, Copeland H, Deswal A. et al. The International Society for Heart and Lung Transplantation/Heart Failure Society of America. Guideline on Acute Mechanical Circulatory Support. J Card Fail 2023; 29: 304-374 DOI: 10.1016/j.cardfail.2022.11.003. (PMID: 36805198)
- 3 Lang CN, Kaier K, Zotzmann V. et al. Cardiogenic shock: incidence, survival and mechanical circulatory support usage 2007–2017 – insights from a national registry. Clin Res Cardiol 2021; 110: 1421-1430 DOI: 10.1007/s00392-020-01781-z.
- 4 Vahdatpour C, Collins D, Goldberg S. Cardiogenic Shock. J Am Heart Assoc 2019; 8: e011991 DOI: 10.1161/JAHA.119.011991. (PMID: 30947630)
- 5 van Diepen S, Katz JN, Albert NM. et al. Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation 2017; 136: e232-e268 DOI: 10.1161/CIR.0000000000000525.
- 6 Harjola V-P, Lassus J, Sionis A. et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur J Heart Fail 2015; 17: 501-509 DOI: 10.1002/ejhf.260. (PMID: 25820680)
- 7 Gibbon JH. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med 1954; 37: 171-185 (PMID: 13154149)
- 8 Mosier JM, Kelsey M, Raz Y. et al. Extracorporeal membrane oxygenation (ECMO) for critically ill adults in the emergency department: history, current applications, and future directions. Crit Care 2015; 19: 431 DOI: 10.1186/s13054-015-1155-7. (PMID: 26672979)
- 9 Atti V, Narayanan MA, Patel B. et al. A Comprehensive Review of Mechanical Circulatory Support Devices. Heart Int 2022; 16: 37-48 DOI: 10.17925/HI.2022.16.1.37. (PMID: 36275352)
- 10 Bělohlávek J, Mlček M, Huptych M. et al. Coronary versus carotid blood flow and coronary perfusion pressure in a pig model of prolonged cardiac arrest treated by different modes of venoarterial ECMO and intraaortic balloon counterpulsation. Crit Care 2012; 16: R50 DOI: 10.1186/cc11254. (PMID: 22424292)
- 11 Donker DW, Brodie D, Henriques JPS. et al. Left ventricular unloading during veno-arterial ECMO: a review of percutaneous and surgical unloading interventions. Perfusion 2019; 34: 98-105 DOI: 10.1177/0267659118794112.
- 12 Cevasco M, Takayama H, Ando M. et al. Left ventricular distension and venting strategies for patients on venoarterial extracorporeal membrane oxygenation. J Thorac Dis 2019; 11: 1676-1683 DOI: 10.21037/jtd.2019.03.29. (PMID: 31179113)
- 13 Rupprecht L, Lunz D, Philipp A. et al. Pitfalls in percutaneous ECMO cannulation. Heart Lung Vessel 2015; 7: 320-326 (PMID: 26811838)
- 14 Honore PM, Barreto Gutierrez L, Kugener L. et al. Risk of harlequin syndrome during bi-femoral peripheral VA-ECMO: should we pay more attention to the watershed or try to change the venous cannulation site?. Crit Care 2020; 24: 450 DOI: 10.1186/s13054-020-03168-y. (PMID: 32690070)
- 15 Hardin CC, Hibbert K. ECMO for Severe ARDS. N Engl J Med 2018; 378: 2032-2034 DOI: 10.1056/NEJMe1802676. (PMID: 29791819)
- 16 Moulopoulos SD, Topaz S, Kolff WJ. Diastolic balloon pumping (with carbon dioxide) in the aorta—A mechanical assistance to the failing circulation. Am Heart J 1962; 63: 669-675 DOI: 10.1016/0002-8703(62)90012-1.
- 17 Scheidt S, Wilner G, Mueller H. et al. Intra-Aortic Balloon Counterpulsation in Cardiogenic Shock. N Engl J Med 1973; 288: 979-984 DOI: 10.1056/NEJM197305102881901. (PMID: 4696253)
- 18 Thiele H, Allam B, Chatellier G. et al. Shock in acute myocardial infarction: the Cape Horn for trials?. Eur Heart J 2010; 31: 1828-1835 DOI: 10.1093/eurheartj/ehq220. (PMID: 20610640)
- 19 Prondzinsky R, Lemm H, Swyter M. et al. Intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: The prospective, randomized IABP SHOCK Trial for attenuation of multiorgan dysfunction syndrome. Crit Care Med 2010; 38: 152 DOI: 10.1097/CCM.0b013e3181b78671.
- 20 Prondzinsky R, Unverzagt S, Russ M. et al. Hemodynamic Effects of Intra-aortic Balloon Counterpulsation in Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock: The Prospective, Randomized IABP Shock Trial. Shock 2012; 37: 378 DOI: 10.1097/SHK.0b013e31824a67af.
- 21 Thiele H, Zeymer U, Neumann FJ. et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. N Engl J Med 2012; 367: 1287-1296 DOI: 10.1056/NEJMoa1208410.
- 22 Patel MR, Smalling RW, Thiele H. et al. Intra-aortic Balloon Counterpulsation and Infarct Size in Patients With Acute Anterior Myocardial Infarction Without Shock: The CRISP AMI Randomized Trial. JAMA 2011; 306: 1329-1337 DOI: 10.1001/jama.2011.1280.
- 23 De Lazzari B, Capoccia M, Badagliacca R. et al. IABP versus Impella Support in Cardiogenic Shock: “In Silico” Study. J Cardiovasc Dev Dis 2023; 10: 140 DOI: 10.3390/jcdd10040140. (PMID: 37103019)
- 24 Thiele H, Lauer B, Hambrecht R. et al. Reversal of Cardiogenic Shock by Percutaneous Left Atrial-to-Femoral Arterial Bypass Assistance. Circulation 2001; 104: 2917-2922 DOI: 10.1161/hc4901.100361. (PMID: 11739306)
- 25 Burkhoff D, Cohen H, Brunckhorst C. et al. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 2006; 152: 469.e1-469.e8 DOI: 10.1016/j.ahj.2006.05.031.
- 26 Thiele H, Sick P, Boudriot E. et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 2005; 26: 1276-1283 DOI: 10.1093/eurheartj/ehi161.
- 27 Rihal CS, Naidu SS, Givertz MM. et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care: Endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention. J Am Coll Cardiol 2015; 65: e7-e26 DOI: 10.1016/j.jacc.2015.03.036. (PMID: 25861963)
- 28 Hira RS, Thamwiwat A, Kar B. TandemHeart placement for cardiogenic shock in acute severe mitral regurgitation and right ventricular failure. Catheter Cardiovasc Interv 2014; 83: 319-322 DOI: 10.1002/ccd.25107. (PMID: 23907937)
- 29 Salter BS, Gross CR, Weiner MM. et al. Temporary mechanical circulatory support devices: practical considerations for all stakeholders. Nat Rev Cardiol 2023; 20: 263-277 DOI: 10.1038/s41569-022-00796-5. (PMID: 36357709)
- 30 Burzotta F, Trani C, Doshi SN. et al. Impella ventricular support in clinical practice: Collaborative viewpoint from a European expert user group. Int J Cardiol 2015; 201: 684-691 DOI: 10.1016/j.ijcard.2015.07.065.
- 31 Dixon SR, Henriques JPS, Mauri L. et al. A Prospective Feasibility Trial Investigating the Use of the Impella 2.5 System in Patients Undergoing High-Risk Percutaneous Coronary Intervention (The PROTECT I Trial): Initial U.S. Experience. JACC Cardiovasc Interv 2009; 2: 91-96 DOI: 10.1016/j.jcin.2008.11.005. (PMID: 19463408)
- 32 Sauren LDC, Accord RE, Hamzeh K. et al. Combined Impella and Intra-aortic Balloon Pump Support to Improve Both Ventricular Unloading and Coronary Blood Flow for Myocardial Recovery: An Experimental Study. Artif Organs 2007; 31: 839-842 DOI: 10.1111/j.1525-1594.2007.00477.x.
- 33 Schrage B, Burkhoff D, Rübsamen N. et al. Unloading of the Left Ventricle During Venoarterial Extracorporeal Membrane Oxygenation Therapy in Cardiogenic Shock. JACC Heart Fail 2018; 6: 1035-1043 DOI: 10.1016/j.jchf.2018.09.009.
- 34 Remmelink M, Sjauw KD, Henriques JPS. et al. Effects of left ventricular unloading by Impella recover LP2.5 on coronary hemodynamics. Catheter Cardiovasc Interv 2007; 70: 532-537 DOI: 10.1002/ccd.21160. (PMID: 17896398)
- 35 Watanabe S, Fish K, Kovacic JC. et al. Left Ventricular Unloading Using an Impella CP Improves Coronary Flow and Infarct Zone Perfusion in Ischemic Heart Failure. J Am Heart Assoc 2018; 7: e006462 DOI: 10.1161/JAHA.117.006462. (PMID: 29514806)
- 36 Dangas GD, Kini AS, Sharma SK. et al. Impact of Hemodynamic Support With Impella 2.5 Versus Intra-Aortic Balloon Pump on Prognostically Important Clinical Outcomes in Patients Undergoing High-Risk Percutaneous Coronary Intervention (from the PROTECT II Randomized Trial). Am J Cardiol 2014; 113: 222-228 DOI: 10.1016/j.amjcard.2013.09.008.
- 37 David CH, Quessard A, Mastroianni C. et al. Mechanical circulatory support with the Impella 5.0 and the Impella Left Direct pumps for postcardiotomy cardiogenic shock at La Pitié-Salpêtrière Hospital. Eur J Cardiothorac Surg 2020; 57: 183-188 DOI: 10.1093/ejcts/ezz179.
- 38 Engström AE, Cocchieri R, Driessen AH. et al. The Impella 2.5 and 5.0 devices for ST-elevation myocardial infarction patients presenting with severe and profound cardiogenic shock: The Academic Medical Center intensive care unit experience. Crit Care Med 2011; 39: 2072 DOI: 10.1097/CCM.0b013e31821e89b5.
- 39 Londoño JC, Martinez CA, Singh V. et al. Hemodynamic Support with Impella 2.5 during Balloon Aortic Valvuloplasty in a High-Risk Patient. J Interv Cardiol 2011; 24: 193-197 DOI: 10.1111/j.1540-8183.2010.00625.x.
- 40 O’Neill WW, Schreiber T, Wohns DHW. et al. The Current Use of Impella 2.5 in Acute Myocardial Infarction Complicated by Cardiogenic Shock: Results from the USpella Registry. J Interv Cardiol 2014; 27: 1-11 DOI: 10.1111/joic.12080.
- 41 Reddy YM, Chinitz L, Mansour M. et al. Percutaneous Left Ventricular Assist Devices in Ventricular Tachycardia Ablation. Circ Arrhythm Electrophysiol 2014; 7: 244-250 DOI: 10.1161/CIRCEP.113.000548. (PMID: 24532564)
- 42 Anderson MB, Goldstein J, Milano C. et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant 2015; 34: 1549-1560 DOI: 10.1016/j.healun.2015.08.018. (PMID: 26681124)
- 43 Schrage B, Sundermeyer J, Blankenberg S. et al. Timing of Active Left Ventricular Unloading in Patients on Venoarterial Extracorporeal Membrane Oxygenation Therapy. JACC Heart Fail 2023; 11: 321-330 DOI: 10.1016/j.jchf.2022.11.005. (PMID: 36724180)
- 44 Vincent JL, De Backer D. Circulatory Shock. N Engl J Med 2013; 369: 1726-1734 DOI: 10.1056/NEJMra1208943. (PMID: 24171518)
- 45 Guyton AC. The relationship of cardiac output and arterial pressure control. Circulation 1981; 64: 1079-1088 DOI: 10.1161/01.CIR.64.6.1079. (PMID: 6794930)
- 46 Standl T, Annecke T, Cascorbi I. et al. The Nomenclature, Definition and Distinction of Types of Shock. Dtsch Arztebl Int 2018; 115: 757-768 DOI: 10.3238/arztebl.2018.0757. (PMID: 30573009)
- 47 Thayer KL, Zweck E, Ayouty M. et al. Invasive Hemodynamic Assessment and Classification of In-Hospital Mortality Risk Among Patients With Cardiogenic Shock. Circ Heart Fail 2020; 13: e007099 DOI: 10.1161/CIRCHEARTFAILURE.120.007099.
- 48 Garan AR, Kanwar M, Thayer KL. et al. Complete Hemodynamic Profiling With Pulmonary Artery Catheters in Cardiogenic Shock Is Associated With Lower In-Hospital Mortality. JACC Heart Fail 2020; 8: 903-913 DOI: 10.1016/j.jchf.2020.08.012.
- 49 Zotzmann V, Rottmann FA, Müller-Pelzer K. et al. Obstructive Shock, from Diagnosis to Treatment. RCM 2022; 23: 248 DOI: 10.31083/j.rcm2307248.
- 50 Kondo T, Morimoto R, Yokoi T. et al. Hemodynamics of cardiac tamponade during extracorporeal membrane oxygenation support in a patient with fulminant myocarditis. J Cardiol Cases 2019; 19: 22-24 DOI: 10.1016/j.jccase.2018.08.009.
- 51 Morcos M, Vincent L, Harari R. et al. Cardiac tamponade in venoarterial extracorporeal membrane oxygenation. Echocardiography 2021; 38: 1465-1470 DOI: 10.1111/echo.15145. (PMID: 34176139)
- 52 Yusuff H, Zochios V, Vuylsteke A. Extracorporeal membrane oxygenation in acute massive pulmonary embolism: a systematic review. Perfusion 2015; 30: 611-616 DOI: 10.1177/0267659115583377. (PMID: 25910837)
- 53 Konstantinides SV, Meyer G, Becattini C. et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Heart J 2020; 41: 543-603 DOI: 10.1093/eurheartj/ehz405.
- 54 Kuo K, Palmer L. Pathophysiology of hemorrhagic shock. J Vet Emerg Crit Care 2022; 32: 22-31 DOI: 10.1111/vec.13126. (PMID: 35044060)
- 55 Arlt M, Philipp A, Voelkel S. et al. Extracorporeal membrane oxygenation in severe trauma patients with bleeding shock. Resuscitation 2010; 81: 804-809 DOI: 10.1016/j.resuscitation.2010.02.020.
- 56 Swol J. ECMO for Hemorrhagic Shock After Blunt Trauma. In: Maybauer MO, Maybauer MO. Extracorporeal Membrane Oxygenation: An Interdisciplinary Problem-Based Learning Approach. Oxford: Oxford University Press; 2022
- 57 Siddall E, Khatri M, Radhakrishnan J. Capillary leak syndrome: etiologies, pathophysiology, and management. Kidney Int 2017; 92: 37-46 DOI: 10.1016/j.kint.2016.11.029. (PMID: 28318633)
- 58 Ahrens T. Hemodynamics in Sepsis. AACN Adv Crit Care 2006; 17: 435-445 DOI: 10.4037/15597768-2006-4008. (PMID: 17091044)
- 59 Iovine JA, Villanueva RD, Werth CM. et al. Contemporary hemodynamic management of acute spinal cord injuries with intravenous and enteral vasoactive agents: A narrative review. Am J Health Syst Pharm 2022; 79: 1521-1530 DOI: 10.1093/ajhp/zxac164.
- 60 Popa C, Popa F, Grigorean V. et al. Vascular dysfunctions following spinal cord injury. J Med Life 2010; 3: 275-285 (PMID: 20945818)
- 61 Vogel DJ, Murray J, Czapran AZ. et al. Veno-arterio-venous ECMO for septic cardiomyopathy: a single-centre experience. Perfusion 2018; 33: 57-64 DOI: 10.1177/0267659118766833. (PMID: 29788842)
- 62 Ling RR, Ramanathan K, Poon WH. et al. Venoarterial extracorporeal membrane oxygenation as mechanical circulatory support in adult septic shock: a systematic review and meta-analysis with individual participant data meta-regression analysis. Crit Care 2021; 25: 246 DOI: 10.1186/s13054-021-03668-5.
- 63 Falk L, Hultman J, Broman LM. Extracorporeal Membrane Oxygenation for Septic Shock. Crit Care Med 2019; 47: 1097 DOI: 10.1097/CCM.0000000000003819. (PMID: 31162206)
- 64 Kolte D, Khera S, Aronow WS. et al. Trends in Incidence, Management, and Outcomes of Cardiogenic Shock Complicating ST-Elevation Myocardial Infarction in the United States. J Am Heart Assoc 2014; 3: e000590 DOI: 10.1161/JAHA.113.000590. (PMID: 24419737)
- 65 Kettner J, Sramko M, Holek M. et al. Utility of Intra-Aortic Balloon Pump Support for Ventricular Septal Rupture and Acute Mitral Regurgitation Complicating Acute Myocardial Infarction. Am J Cardiol 2013; 112: 1709-1713 DOI: 10.1016/j.amjcard.2013.07.035. (PMID: 24035169)
- 66 Chioncel O, Parissis J, Mebazaa A. et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock – a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2020; 22: 1315-1341 DOI: 10.1002/ejhf.1922.
- 67 Schrage B, Ibrahim K, Loehn T. et al. Impella Support for Acute Myocardial Infarction Complicated by Cardiogenic Shock. Circulation 2019; 139: 1249-1258 DOI: 10.1161/CIRCULATIONAHA.118.036614. (PMID: 30586755)
- 68 Esposito ML, Zhang Y, Qiao X. et al. Left Ventricular Unloading Before Reperfusion Promotes Functional Recovery After Acute Myocardial Infarction. J Am Coll Cardiol 2018; 72: 501-514 DOI: 10.1016/j.jacc.2018.05.034.
- 69 Saku K, Kakino T, Arimura T. et al. Left Ventricular Mechanical Unloading by Total Support of Impella in Myocardial Infarction Reduces Infarct Size, Preserves Left Ventricular Function, and Prevents Subsequent Heart Failure in Dogs. Circ Heart Fail 2018; 11: e004397 DOI: 10.1161/CIRCHEARTFAILURE.117.004397. (PMID: 29739745)
- 70 Karami M, Eriksen E, Ouweneel DM. et al. Long-term 5-year outcome of the randomized IMPRESS in severe shock trial: percutaneous mechanical circulatory support vs. intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. Eur Heart J Acute Cardiovasc Care 2021; 10: 1009-1015 DOI: 10.1093/ehjacc/zuab060. (PMID: 34327527)
- 71 Dhruva SS, Ross JS, Mortazavi BJ. et al. Association of Use of an Intravascular Microaxial Left Ventricular Assist Device vs Intra-aortic Balloon Pump With In-Hospital Mortality and Major Bleeding Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock. JAMA 2020; 323: 734-745 DOI: 10.1001/jama.2020.0254.
- 72 Møller JE, Gerke O. Danish-German cardiogenic shock trial – DanGer shock: Trial design update. Am Heart J 2023; 255: 90-93 DOI: 10.1016/j.ahj.2022.10.078. (PMID: 36272450)
- 73 Udesen NJ, Møller JE, Lindholm MG. et al. Rationale and design of DanGer shock: Danish-German cardiogenic shock trial. Am Heart J 2019; 214: 60-68 DOI: 10.1016/j.ahj.2019.04.019. (PMID: 31176289)
- 74 Ouweneel DM, Schotborgh JV, Limpens J. et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med 2016; 42: 1922-1934 DOI: 10.1007/s00134-016-4536-8.
- 75 Lackermair K, Brunner S, Orban M. et al. Outcome of patients treated with extracorporeal life support in cardiogenic shock complicating acute myocardial infarction: 1-year result from the ECLS-Shock study. Clin Res Cardiol 2021; 110: 1412-1420 DOI: 10.1007/s00392-020-01778-8.
- 76 Thiele H, Freund A, Gimenez MR. et al. Extracorporeal life support in patients with acute myocardial infarction complicated by cardiogenic shock – Design and rationale of the ECLS-SHOCK trial. Am Heart J 2021; 234: 1-11 DOI: 10.1016/j.ahj.2021.01.002.
- 77 Kapur NK, Esposito ML, Bader Y. et al. Mechanical Circulatory Support Devices for Acute Right Ventricular Failure. Circulation 2017; 136: 314-326 DOI: 10.1161/CIRCULATIONAHA.116.025290. (PMID: 28716832)
- 78 Krishnamoorthy A, DeVore AD, Sun JL. et al. The impact of a failing right heart in patients supported by intra-aortic balloon counterpulsation. Eur Heart J Acute Cardiovasc Care 2017; 6: 709-718 DOI: 10.1177/2048872616652262. (PMID: 27230622)
- 79 Truby L, Mundy L, Kalesan B. et al. Contemporary Outcomes of Venoarterial Extracorporeal Membrane Oxygenation for Refractory Cardiogenic Shock at a Large Tertiary Care Center. ASAIO J 2015; 61: 403 DOI: 10.1097/MAT.0000000000000225. (PMID: 26125665)
- 80 Elder M, Blank N, Kaki A. et al. Mechanical circulatory support for acute right ventricular failure in the setting of pulmonary embolism. J Interv Cardiol 2018; 31: 518-524 DOI: 10.1111/joic.12503. (PMID: 29514403)
- 81 Kapur NK, Paruchuri V, Jagannathan A. et al. Mechanical Circulatory Support for Right Ventricular Failure. JACC Heart Fail 2013; 1: 127-134 DOI: 10.1016/j.jchf.2013.01.007. (PMID: 24621838)
- 82 Schmack B, Weymann A, Popov AF. et al. Concurrent Left Ventricular Assist Device (LVAD) Implantation and Percutaneous Temporary RVAD Support via CardiacAssist Protek-Duo TandemHeart to Preempt Right Heart Failure. Med Sci Monit Basic Res 2016; 22: 53-57 DOI: 10.12659/MSMBR.898897. (PMID: 27145697)
- 83 Rosovsky R, Zhao K, Sista A. et al. Pulmonary embolism response teams: Purpose, evidence for efficacy, and future research directions. Res Pract Thromb Haemost 2019; 3: 315-330 DOI: 10.1002/rth2.12216. (PMID: 31294318)
- 84 Takauji S, Hayakawa M, Ono K. et al. Respiratory extracorporeal membrane oxygenation for severe sepsis and septic shock in adults: a propensity score analysis in a multicenter retrospective observational study. Acute Med Surg 2017; 4: 408-417 DOI: 10.1002/ams2.296. (PMID: 29123901)
- 85 Chvojka J, Martinkova V, Benes J. et al. Mechanical Circulatory Support in Refractory Vasodilatory Septic Shock: a Randomized Controlled Porcine Study. Shock 2020; 53: 124 DOI: 10.1097/SHK.0000000000001329. (PMID: 30807527)
- 86 Lin H, Wang W, Lee M. et al. Current Status of Septic Cardiomyopathy: Basic Science and Clinical Progress. Front Pharmacol 2020; 11: 210 DOI: 10.3389/fphar.2020.00210. (PMID: 32194424)
- 87 Xue W, Pang J, Liu J. et al. Septic cardiomyopathy: characteristics, evaluation, and mechanism. Emerg Crit Care Med 2022; 2: 135 DOI: 10.1097/EC9.0000000000000060.
- 88 Teboul J-L, Hamzaoui O. Early hemodynamic resuscitation of septic shock: what do the new Surviving Sepsis Campaign guidelines really provide?. J Intensive Med 2022; 2: 1-2 DOI: 10.1016/j.jointm.2021.12.001. (PMID: 36789230)
- 89 Evans L, Rhodes A, Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med 2021; 47: 1181-1247 DOI: 10.1007/s00134-021-06506-y. (PMID: 34599691)
- 90 Younger JG, Schreiner RJ, Swaniker F. et al. Extracorporeal Resuscitation of Cardiac Arrest. Acad Emerg Med 1999; 6: 700-707 DOI: 10.1111/j.1553-2712.1999.tb00438.x. (PMID: 10433529)
- 91 Supady A, Wengenmayer T, Bode C. et al. Extrakorporale CPR (eCPR): Seit Oktober 2015 ist die extrakorporale CPR (eCPR) Teil der ALS-Leitlinie. Notfall Rettungsmed 2016; 19: 574-581 DOI: 10.1007/s10049-016-0166-5.
- 92 Yannopoulos D, Bartos J, Raveendran G. et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet 2020; 396: 1807-1816 DOI: 10.1016/S0140-6736(20)32338-2.
- 93 Magnet I, Poppe M. Extrakorporale Reanimation – Kriterien, Bedingungen, Outcome. Med Klin Intensivmed Notfmed 2022; 117: 325-332 DOI: 10.1007/s00063-022-00913-9. (PMID: 35403894)
- 94 Suverein MM, Delnoij TSR, Lorusso R. et al. Early Extracorporeal CPR for Refractory Out-of-Hospital Cardiac Arrest. N Engl J Med 2023; 388: 299-309 DOI: 10.1056/NEJMoa2204511. (PMID: 36720132)
- 95 Scquizzato T, Bonaccorso A, Swol J. et al. Refractory out-of-hospital cardiac arrest and extracorporeal cardiopulmonary resuscitation: A meta-analysis of randomized trials. Artif Organs 2023; 47: 806-816 DOI: 10.1111/aor.14516. (PMID: 36929354)
- 96 Raasveld SJ, Volleman C, Combes A. et al. Knowledge gaps and research priorities in adult veno-arterial extracorporeal membrane oxygenation: a scoping review. Intensive Care Med Exp 2022; 10: 50 DOI: 10.1186/s40635-022-00478-z. (PMID: 36424482)
- 97 Gottula AL, Neumar RW, Hsu CH. Extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest – who, when, and where?. Curr Opin Crit Care 2022; 28: 276 DOI: 10.1097/MCC.0000000000000944. (PMID: 35653248)
- 98 Ho AFW, Ong MEH. Transportation during and after cardiac arrest: who, when, how and where?. Curr Opin Crit Care 2021; 27: 223 DOI: 10.1097/MCC.0000000000000816. (PMID: 33769418)
- 99 Michels G, Wengenmayer T, Hagl C. et al. Recommendations for extracorporeal cardiopulmonary resuscitation (eCPR): consensus statement of DGIIN, DGK, DGTHG, DGfK, DGNI, DGAI, DIVI and GRC. Clin Res Cardiol 2019; 108: 455-464 DOI: 10.1007/s00392-018-1366-4. (PMID: 30361819)
- 100 Vlasselaers D, Desmet M, Desmet L. et al. Ventricular unloading with a miniature axial flow pump in combination with extracorporeal membrane oxygenation. Intensive Care Med 2006; 32: 329-333 DOI: 10.1007/s00134-005-0016-2.
- 101 Schrage B, Becher PM, Bernhardt A. et al. Left Ventricular Unloading Is Associated With Lower Mortality in Patients With Cardiogenic Shock Treated With Venoarterial Extracorporeal Membrane Oxygenation. Circulation 2020; 142: 2095-2106 DOI: 10.1161/CIRCULATIONAHA.120.048792.
- 102 Meani P, Lorusso R, Pappalardo F. ECPella: Concept, Physiology and Clinical Applications. J Cardiothorac Vasc Anesth 2022; 36: 557-566 DOI: 10.1053/j.jvca.2021.01.056. (PMID: 33642170)
- 103 Vetrovec GW, Kaki A, Wollmuth J. et al. Strategies for Reducing Vascular and Bleeding Risk for Percutaneous Left Ventricular Assist Device-supported High-risk Percutaneous Coronary Intervention. Heart Int 2022; 16: 105-111 DOI: 10.17925/hi.2022.16.2.105. (PMID: 36741103)
- 104 Mirus M, Heubner L, Kalbhenn J. et al. Hemostatic disorders associated with extracorporeal membrane oxygenation. Minerva Anestesiol 2023; 89: 586-596 DOI: 10.23736/S0375-9393.23.17121-5. (PMID: 37283541)
- 105 Lang CN, Dettinger JS, Berchtold-Herz M. et al. Intracerebral Hemorrhage in COVID-19 Patients with Pulmonary Failure: A Propensity Score-Matched Registry Study. Neurocrit Care 2021; 34: 739-747 DOI: 10.1007/s12028-021-01202-7.
- 106 Esper SA, Levy JH, Waters JH. et al. Extracorporeal Membrane Oxygenation in the Adult: A Review of Anticoagulation Monitoring and Transfusion. Anesth Analg 2014; 118: 731 DOI: 10.1213/ANE.0000000000000115. (PMID: 24651227)
- 107 Dwaah H, Jain N, Kapur NK. et al. The impact of temporary mechanical circulatory support strategies on thrombocytopenia. J Crit Care 2023; 73: 154216 DOI: 10.1016/j.jcrc.2022.154216. (PMID: 36434833)
- 108 Beavers CJ, DiDomenico RJ, Dunn SP. et al. Optimizing anticoagulation for patients receiving Impella support. Pharmacotherapy 2021; 41: 932-942 DOI: 10.1002/phar.2629. (PMID: 34597429)
- 109 Staudacher DL, Biever PM, Benk C. et al. Dual Antiplatelet Therapy (DAPT) versus No Antiplatelet Therapy and Incidence of Major Bleeding in Patients on Venoarterial Extracorporeal Membrane Oxygenation. Plos One 2016; 11: e0159973 DOI: 10.1371/journal.pone.0159973. (PMID: 27467697)
- 110 Lang CN, Zotzmann V, Schmid B. et al. Utilization of transfusions and coagulation products in cardiogenic shock with and without mechanical circulatory support. J Crit Care 2021; 65: 62-64 DOI: 10.1016/j.jcrc.2021.05.018.
- 111 Balthazar T, Bennett J, Adriaenssens T. Hemolysis during short-term mechanical circulatory support: from pathophysiology to diagnosis and treatment. Expert Rev Med Devices 2022; 19: 477-488 DOI: 10.1080/17434440.2022.2108319. (PMID: 35912874)
- 112 Møller JE, Sionis A, Aissaoui N. et al. Step by step daily management of short-term mechanical circulatory support for cardiogenic shock in adults in the intensive cardiac care unit. A clinical consensus statement of the Association for Acute Cardio Vascular Care (ACVC) of the ESC, the European Society of Intensive Care Medicine (ESICM), the European branch of the Extracorporeal Life Support Organization (EuroELSO) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J Acute Cardiovasc Care 2023; 12: 475-485 DOI: 10.1093/ehjacc/zuad064. (PMID: 37315190)
- 113 Niroomand A, Olm F, Lindstedt S. Extracorporeal Membrane Oxygenation: Set-up, Indications, and Complications. In: Magin CM. Engineering Translational Models of Lung Homeostasis and Disease. Cham: Springer International Publishing; 2023: 291-312
- 114 Schwarzman LS, Ishaaya EC, Patel D. et al. Characteristic adverse events with intra-aortic balloon pumps: An analysis of the U.S. Food and Drug Administration MAUDE database from 2016 to 2021. Cardiovasc Revasc Med 2023; DOI: 10.1016/j.carrev.2023.05.432. (PMID: 37302952)
- 115 McDonagh TA, Metra M, Adamo M. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42: 3599-3726 DOI: 10.1093/eurheartj/ehab368. (PMID: 34447992)
- 116 Amin AP, Spertus JA, Curtis JP. et al. The Evolving Landscape of Impella Use in the United States Among Patients Undergoing Percutaneous Coronary Intervention With Mechanical Circulatory Support. Circulation 2020; 141: 273-284 DOI: 10.1161/CIRCULATIONAHA.119.044007. (PMID: 32776840)
- 117 Henry TD, Yannopoulos D, van Diepen S. Extracorporeal Membrane Oxygenation for Cardiogenic Shock: When to Open the Parachute?. Circulation 2023; 147: 465-468 DOI: 10.1161/CIRCULATIONAHA.122.063190. (PMID: 36745696)
- 118 Muller G, Flecher E, Lebreton G. et al. The ENCOURAGE mortality risk score and analysis of long-term outcomes after VA-ECMO for acute myocardial infarction with cardiogenic shock. Intensive Care Med 2016; 42: 370-378 DOI: 10.1007/s00134-016-4223-9.
- 119 Warren AF, Rosner C, Gattani R. et al. Cardiogenic Shock: Protocols, Teams, Centers, and Networks. US Cardiology Review 2021; 15: e18 DOI: 10.15420/usc.2021.10.
- 120 Trummer G, Müller T, Muellenbach RM. et al. Ausbildungsmodul Extrakorporaler Life Support (ECLS): Konsensuspapier der DIVI, DGTHG, DGfK, DGAI, DGIIN, DGF, GRC und der DGK. Anaesthesist 2021; 70: 603-606 DOI: 10.1007/s00101-021-00956-1.