Subscribe to RSS
DOI: 10.1055/a-2103-9140
Ligand-Enabled Regio- and/or Stereoselective Hydroboration of Alkenes
We thank Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences for its generous financial support.
![](https://www.thieme-connect.de/media/synlett/202318/lookinside/thumbnails/st-2023-r0198-a_10-1055_a-2103-9140-1.jpg)
Abstract
Alkylboronic acids are widely used in medicinal chemistry, material sciences, and organic synthesis. Accordingly, a large number of methods have been developed for the regio- and stereo-selective synthesis of these structures. Transition-metal-catalyzed hydroboration of alkenes is one of the most convenient and direct methods. However, the stereoselective hydroboration of heteroatom-substituted alkenes and regioselective hydroboration of aliphatic internal alkenes are still challenging. In this account, we emphasize our recent work on ligand-enabled transition-metal-catalyzed regio- and/or stereoselective hydroboration of alkenes, including copper-catalyzed asymmetric hydroboration of β-amidoacrylonitriles, β-amidoacrylate esters, indole-3-carboxylates, and iridium-catalyzed distal hydroboration of aliphatic internal alkenes.
1 Introduction
2 Copper-Catalyzed Asymmetric Hydroboration of Enamine Derivatives
3 Iridium-Catalyzed Distal Hydroboration of Aliphatic Internal Alkenes
4 Conclusion
Publication History
Received: 05 May 2023
Accepted after revision: 31 May 2023
Accepted Manuscript online:
31 May 2023
Article published online:
14 July 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Pelter A, Smith K, Brown HC. Borane Reagents . Academic Press; London: 1988
- 1b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 1c Davison M, Hughes AK, Marder TB, Wade K. Contemporary Boron Chemistry . RSC; Cambridge UK: 2000
- 2a Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091
- 2b Schiffner JA, Müther K, Oestreich M. Angew. Chem. Int. Ed. 2010; 49: 1194
- 2c Cid J, Gulyas H, Carbo JJ, Fernandez E. Chem. Soc. Rev. 2012; 43: 3558
- 2d Dang L, Lin Z, Marder TB. Chem. Commun. 2009; 3987
- 2e Chen J, Lu Z. Org. Chem. Front. 2018; 5: 260
- 2f Coombs JR, Morken JP. Angew. Chem. Int. Ed. 2016; 55: 2636
- 3a Lata CJ, Crudden CM. J. Am. Chem. Soc. 2010; 132: 131
- 3b Zhang L, Peng D, Leng X, Huang Z. Angew. Chem. Int. Ed. 2013; 52: 3676
- 3c Zhang L, Zuo Z, Leng X, Huang Z. Angew. Chem. Int. Ed. 2014; 53: 2696
- 3d Iwamoto H, Imamoto T, Ito H. Nat. Commun. 2018; 9: 2290
- 3e Iwamoto H, Kubota K, Ito H. Chem. Commun. 2016; 52: 5916
- 3f Jang WJ, Song SM, Moon JH, Lee JY, Yun J. J. Am. Chem. Soc. 2017; 139: 13660
- 4a Koji K, Eiji Y, Hajime I. Adv. Synth. Catal. 2013; 355: 3527
- 4b Hajime I, Hiroshi Y, Jun-ichi T, Akira H. ChemInform 2000; 31
- 4c Ito H, Yamanaka H, Tateiwa J, Hosomi A. Tetrahedron Lett. 2000; 41: 6821
- 4d Kou T, Tatsuo I, Norio M. Chem. Lett. 2000; 29: 982
- 4e O’Brien JM, Lee K.-S, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10630
- 4f Mun S, Lee J.-E, Yun J. Org. Lett. 2006; 8: 4887
- 4g Sim H.-S, Feng X, Yun J. Chem. Eur. J. 2009; 15: 1939
- 4h Feng X, Yun J. Chem. Commun. 2009; 6577
- 4i Luo Y, Roy ID, Madec AG. E, Lam HW. Angew. Chem. Int. Ed. 2014; 53: 4186
- 4j Lee J.-E, Yun J. Angew. Chem. Int. Ed. 2007; 47: 145
- 4k Chea H, Sim H.-S, Yun J. Adv. Synth. Catal. 2009; 351: 855
- 4l Sasaki Y, Horita Y, Zhong C, Sawamura M, Ito H. Angew. Chem. Int. Ed. 2011; 50: 2778
- 4m Meng F, Jang H, Hoveyda AH. Chem. Eur. J. 2013; 19: 3204
- 5a Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
- 5b Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
- 5c Koji K, Yuta W, Hajime I. Adv. Synth. Catal. 2016; 358: 2379
- 5d Lu W, Fengchang C, Han L, Shuoqing Z, Xin H, Fanke M. Asian J. Org. Chem. 2018; 7: 103
- 5e Wen Y, Xie J, Deng C, Li C. J. Org. Chem. 2015; 80: 4142
- 5f Noh D, Yoon SK, Won J, Lee JY, Yun J. Chem. Asian J. 2011; 6: 1967
- 5g Wang Z, He X, Zhang R, Zhang G, Xu G, Zhang Q, Xiong T, Zhang Q. Org. Lett. 2017; 19: 3067
- 5h Corberan R, Mszar NW, Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
- 5i Zhang L, Zuo Z, Wan X, Huang Z. J. Am. Chem. Soc. 2014; 136: 15501
- 5j Chen J, Xi T, Lu Z. Org. Lett. 2014; 16: 6452
- 5k Chen J, Xi T, Ren X, Cheng B, Guo J, Lu Z. Org. Chem. Front. 2014; 1: 1306
- 5l Hoang GL, Zhang S, Takacs JM. Chem. Commun. 2018; 54: 4838
- 5m Crudden CM, Hleba YB, Chen AC. J. Am. Chem. Soc. 2004; 126: 9200
- 6a Hoveyda AH, Evans DA, Fu GC. Chem. Rev. 1993; 93: 1307
- 6b Evans DA, Fu GC. J. Am. Chem. Soc. 1991; 113: 4042
- 6c Smith SM, Takacs JM. J. Am. Chem. Soc. 2010; 132: 1740
- 6d Smith SM, Thacker NC, Takacs JM. J. Am. Chem. Soc. 2008; 130: 3734
- 6e Shoba VM, Thacker NC, Bochat AJ, Takacs JM. Angew. Chem. Int. Ed. 2016; 55: 1465
- 6f Chakrabarty S, Takacs JM. J. Am. Chem. Soc. 2017; 139: 6066
- 6g Evans DA, Fu GC, Anderson BA. J. Am. Chem. Soc. 1992; 114: 6679
- 6h Hoang GL, Takacs JM. Chem. Sci. 2017; 8: 4511
- 6i Zhao W, Chen K.-Z, Li A.-Z, Li B.-J. J. Am. Chem. Soc. 2022; 144: 13071
- 7 Xi Y, Hartwig JF. J. Am. Chem. Soc. 2016; 138: 6703
- 8 Bai X.-Y, Zhao W, Sun X, Li B.-J. J. Am. Chem. Soc. 2019; 141: 19870
- 9a Smith SM, Hoang GL, Pal R, Khaled MO. B, Pelter LS. W, Zeng XC, Takacs JM. Chem. Commun. 2012; 48: 12180
- 9b Lu H, Li B. Chin. J. Org. Chem. 2022; 42: 3167
- 9c Guo J, Cheng Z, Chen J, Chen X, Lu Z. Acc. Chem. Res. 2021; 54: 2701
- 9d Alam S, Karim R, Khan A, Pal AK, Maruani A. Eur. J. Org. Chem. 2021; 6115
- 10a Chen L, Zou X, Zhao H, Xu S. Org. Lett. 2017; 19: 3676
- 10b Chen L, Shen J.-J, Gao Q, Xu S. Chem. Sci. 2018; 9: 5855
- 10c Wang G, Liang X, Chen L, Gao Q, Wang J.-G, Zhang P, Peng Q, Xu S. Angew. Chem. Int. Ed. 2019; 58: 8187
- 10d Zhao H, Gao Q, Zhang Y, Zhang P, Xu S. Org. Lett. 2020; 22: 2861
- 11a Rentsch A, Landsberg D, Brodmann T, Buelow L, Girbig A.-K, Kalesse M. Angew. Chem. Int. Ed. 2013; 52: 5450
- 11b Andres P, Ballano G, Calaza MI, Cativiela C. Chem. Soc. Rev. 2016; 45: 2291
- 11c Dick LR, Fleming PE. Drug Discovery Today 2010; 15: 243
- 11d Roemmele RC, Christie MA. Org. Process Res. Dev. 2013; 17: 422
- 11e Gentile M, Offidani M, Vigna E, Corvatta L, Recchia AG, Morabito L, Morabito F, Gentili S. Expert Opin. Invest. Drugs 2015; 24: 1287
- 11f Inglis SR, Strieker M, Rydzik AM, Dessen A, Schofield CJ. Anal. Biochem. 2012; 420: 41
- 11g Jin S, Zhu C, Cheng Y, Li M, Wang B. Bioorg. Med. Chem. 2010; 18: 1449
- 11h Ohmura T, Awano T, Suginome M. J. Am. Chem. Soc. 2010; 132: 13191
- 11i Awano T, Ohmura T, Suginome M. J. Am. Chem. Soc. 2011; 133: 20738
- 11j Buesking AW, Ellman JA. Chem. Sci. 2014; 5: 1983
- 12a Matteson DS. Chem. Rev. 1989; 89: 1535
- 12b Matteson DS. Med. Res. Rev. 2008; 28: 233
- 12c Beenen MA, An C, Ellman JA. J. Am. Chem. Soc. 2008; 130: 6910
- 12d Xie J.-b, Luo J, Winn TR, Cordes DB, Li G. Beilstein J. Org. Chem. 2014; 10: 746
- 12e He Z, Zajdlik A, St Denis JD, Assem N, Yudin AK. J. Am. Chem. Soc. 2012; 134: 9926
- 12f Zajdlik A, Wang Z, Hickey JL, Aman A, Schimmer AD, Yudin AK. Angew. Chem. Int. Ed. 2013; 52: 8411
- 13a Hong K, Morken JP. J. Am. Chem. Soc. 2013; 135: 9252
- 13b Sole C, Gulyas H, Fernández E. Chem. Commun. 2012; 48: 3769
- 13c Zhang S.-S, Zhao Y.-S, Tian P, Lin G.-Q. Synlett 2013; 24: 437
- 13d Wang D, Cao P, Wang B, Jia T, Lou Y, Wang M, Liao J. Org. Lett. 2015; 17: 2420
- 13e Hu N, Zhao G, Zhang Y, Liu X, Li G, Tang W. J. Am. Chem. Soc. 2015; 137: 6746
- 13f Nishikawa D, Hirano K, Miura M. J. Am. Chem. Soc. 2015; 137: 15620
- 14 Li C, Wang J, Barton LM, Yu S, Tian M, Peters DS, Kumar M, Yu AW, Johnson KA, Chatterjee AK, Yan M, Baran PS. Science 2017; 356: eaam7355
- 15a Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
- 15b Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 15c Ding Q, Zhou X, Fan R. Org. Biomol. Chem. 2014; 12: 4807
- 15d Roche SP, Youte J.-J, Tréguier B. Tetrahedron 2015; 71: 3549
- 16 Xia Z, Xu-Xu Q.-F, Zheng C, You S.-L. Chem. Soc. Rev. 2020; 49: 286
- 17a Arrowsmith M, Hill MS, Hadlington T, Kociok-Köhn G, Weetman C. Organometallics 2011; 30: 5556
- 17b Oshima K, Ohmura T, Suginome M. J. Am. Chem. Soc. 2011; 133: 7324
- 17c Oshima K, Ohmura T, Suginome M. J. Am. Chem. Soc. 2012; 134: 3699
- 17d Dudnik AS, Weidner VL, Motta A, Delferro M, Marks TJ. Nat. Chem. 2014; 6: 1100
- 17e Zhang F, Song H, Zhuang X, Tung C.-H, Wang W. J. Am. Chem. Soc. 2017; 139: 17775
- 17f Fan X, Zheng J, Li ZH, Wang H. J. Am. Chem. Soc. 2015; 137: 4916
- 17g Ohmura T, Morimasa Y, Suginome M. J. Am. Chem. Soc. 2015; 137: 2852
- 17h Rao B, Chong CC, Kinjo R. J. Am. Chem. Soc. 2018; 140: 652
- 17i Jayaraman A, Misal Castro LC, Desrosiers V, Fontaine F.-G. Chem. Sci. 2018; 9: 5057
- 18a Orallo F, Tristan H, Garcia-Ferreiro T, Francisco SD. E, Masaguer C, Ravina E, Calleja JM, Cadavid I, Loza MI. Biol. Pharm. Bull. 2000; 23: 558
- 18b Clemett D, Jarvis B. Drugs Aging 2001; 18: 277
- 18c Ettinger U, Kumari V, Zachariah E, Galea A, Crawford TJ, Corr PJ, Taylor D, Das M, Sharma T. Neuropsychopharmacology 2003; 28: 2199
- 19a Hoffmann S, Nicoletti M, List B. J. Am. Chem. Soc. 2006; 128: 13074
- 19b Lu Z, Wilsily A, Fu GC. J. Am. Chem. Soc. 2011; 133: 8154
- 19c Zhu S, Buchwald SL. J. Am. Chem. Soc. 2014; 136: 15913
- 19d Czekelius C, Carreira EM. Angew. Chem. Int. Ed. 2003; 42: 4793
- 20a Nguyen TN, May JA. Org. Lett. 2018; 20: 3618
- 20b Ghorai MK, Shukla D, Bhattacharyya A. J. Org. Chem. 2012; 77: 3740
- 20c Bera M, Pratihar S, Roy S. J. Org. Chem. 2011; 76: 1475
- 20d Ghorai MK, Kumar A, Tiwari DP. J. Org. Chem. 2010; 75: 137
- 20e Yadav JS, Reddy BV. S, Narasimhulu G, Satheesh G. Synlett 2009; 727
- 20f Bertolini F, Crotti S, Di Bussolo V, Macchia F, Pineschi M. J. Org. Chem. 2008; 73: 8998
- 20g Dwivedi SK, Gandhi S, Rastogi N, Singh VK. Tetrahedron Lett. 2007; 48: 5375
- 20h Domostoj M, Ungureanu I, Schoenfelder A, Klotz P, Mann A. Tetrahedron Lett. 2006; 47: 2205
- 21 Wu Z, Laffoon SD, Hull KL. Nat. Commun. 2018; 9: 1185
Selected reviews, see:
Selected examples, see:
Selected examples, see:
Selected examples, see:
For a review, see:
For examples, see: