Synlett 2024; 35(02): 196-204
DOI: 10.1055/a-2081-8907
account

Borylative Difunctionalization of Unsaturated Hydrocarbons Using Borylcopper Species


Abstract

This account summarizes the Cu-catalyzed borylative functionalizations of unsaturated hydrocarbons that we have developed over the past decade. First, we focus on the regioselective hydroboration of unsymmetrical internal alkynes and 1,2-dienes. Secondly, a borylative allyl–allyl coupling using 1,2-dienes, B2pin2, and an allyl phosphate is presented. Thirdly, we introduce the boroacylation and boroformylation of 1,2-dienes by using an acid anhydride or formate, respectively, as the electrophile. Lastly, we describe the synthesis of 2-boryl-1,3-butadienes and cyclic allylborates. These reactions offer a versatile method for synthesizing a broad range of useful compounds and also provide a detailed understanding of the reaction mechanism, which could lead to the development of catalysts that are both more efficient and more selective.

1 Introduction

2 Hydroboration of Alkynes

3 Hydroboration of 1,2-Dienes and 1,3-Dienes

4 Synthesis of 2-Boryl-1,3-butadienes

5 Boroallylation of 1,2-Dienes

6 Boroacylation of 1,2-Dienes

7 Boroformylation of 1,2-Dienes and 1,3-Dienes

8 Synthesis of Cyclic Allylborates

9 Conclusion and Outlook



Publication History

Received: 11 April 2023

Accepted after revision: 26 April 2023

Accepted Manuscript online:
26 April 2023

Article published online:
05 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed. Hall DG. Wiley-VCH; Weinheim: 2011
    • 2a West MJ, Fyfe JW. B, Vantourout JC, Watson AJ. B. Chem. Rev. 2019; 119: 12491
    • 2b Chen J.-Q, Li J.-H, Dong Z.-B. Adv. Synth. Catal. 2020; 362: 3311
    • 4a Brown HC. Pure Appl. Chem. 1976; 47: 49
    • 4b Beletskaya L, Pelter A. Tetrahedron 1997; 53: 4957
    • 4c Crudden CM, Edwards D. Eur. J. Org. Chem. 2003; 4695
    • 4d Carroll A.-M, O’Sullivan TP, Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
  • 5 Neeve EC, Geier SJ, Mkhalid IA. I, Westcott SA, Marder TB. Chem. Rev. 2016; 116: 9091

    • For Pd-catalyzed borylations, see:
    • 6a Rout L, Punniyamurthy T. Coord. Chem. Rev. 2021; 431: 213675
    • 6b Chow WK, Yuen OY, Choy PY, So CM, Lau CP, Wong WT, Kwong FY. RSC Adv. 2013; 3: 12518

      For Ir-catalyzed borylations, see:
    • 7a Su B, Hartwig JF. Angew. Chem. Int. Ed. 2022; 61: e202113343
    • 7b Veth L, Grab HA, Dydio P. Synthesis 2022; 54: 3482
    • 7c Li Y, Wu X.-F. Angew. Chem. Int. Ed. 2020; 59: 1770
    • 7d Wright JS, Scott PJ. H, Steel PG. Angew. Chem. Int. Ed. 2021; 60: 2796
    • 7e Kuroda Y, Nakao Y. Chem. Lett. 2019; 48: 1092
    • 7f Hartwig JF. Acc. Chem. Res. 2012; 45: 864
    • 7g Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 7h Ishiyama T, Miyaura N. Pure Appl. Chem. 2006; 78: 1369

      For Cu-catalyzed borylations, see:
    • 8a Alam S, Karim R, Khan A, Pal AK. A. K, Maruani A. Eur. J. Org. Chem. 2021; 6115
    • 8b Perry GJ. P, Jia T, Procter DJ. ACS Catal. 2020; 10: 1485
    • 8c Fujihara T, Tsuji Y. Synthesis 2018; 50: 1737
    • 8d Tsuji Y, Fujihara T. Chem. Rec. 2016; 16: 2294
    • 8e Yoshida H. Chem. Rec. 2016; 16: 419
    • 8f Yoshida H. ACS Catal. 2016; 6: 1799
    • 8g Semba Y, Fujihara T, Terao J, Tsuji Y. Tetrahedron 2015; 71: 2183
    • 8h Yun J. Asian J. Org. Chem. 2013; 1016
    • 9a Laitar DS, Müller P, Sadighi JP. J. Am. Chem. Soc. 2005; 127: 17196
    • 9b Zhao H, Lin Z, Marder TB. J. Am. Chem. Soc. 2006; 128: 15637
  • 10 Semba K, Shinomiya M, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2013; 19: 7125

    • For selected examples, see:
    • 11a Pereira S, Srebnik M. Organometallics 1995; 14: 3127
    • 11b Ohmura T, Yamamoto Y, Miyaura N. J. Am. Chem. Soc. 2000; 122: 4990
    • 11c Wang YD, Kimball G, Prashad AS, Wang Y. Tetrahedron Lett. 2005; 46: 8777
    • 11d Jang H, Zhugralin AR, Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7859
  • 12 Kim HR, Yun J. Chem. Commun. 2011; 47: 2943
  • 13 Semba K, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2012; 18: 4179
  • 14 Lipshutz BH, Bošković ŽV, Aue DH. Angew. Chem. Int. Ed. 2008; 47: 10183
  • 15 Jung B, Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 1490
  • 16 Yuan W, Ma S. Adv. Synth. Catal. 2012; 354: 1867

    • For selected examples, see:
    • 17a Ito H, Kawakami C, Sawamura M. J. Am. Chem. Soc. 2005; 127: 16034
    • 17b Tortosa M. Angew. Chem. Int. Ed. 2011; 50: 3950
    • 17c Ito H, Ito S, Sasaki Y, Matsuura K, Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
    • 17d Guzman-Martinez A, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10634
    • 17e Ito H, Kunii S, Sawamura M. Nat. Chem. 2010; 2: 972
  • 18 Semba K, Fujihara T, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2013; 52: 12400
  • 19 Alfaro A, Parra A, Alemań J, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
  • 20 Yoshida H, Kageyuki I, Takaki K. Org. Lett. 2013; 15: 952
  • 21 Semba K, Bessho N, Fujihara T, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2014; 53: 9007
  • 22 Meng F, McGrath KP, Hoveyda AH. Nature 2014; 513: 367
  • 23 Kageyuki I, Itaru O, Takaki K, Yoshida H. Org. Lett. 2017; 19: 830
  • 24 Boreux A, Indukuri K, Gagosz F, Riant O. ACS Catal. 2017; 7: 8200
  • 25 Han J, Zhou W, Zhang P.-C, Wang H, Zhang R, Wu H.-H, Zhang J. ACS Catal. 2019; 9: 6890
  • 26 Sawada A, Fujihara T, Tsuji Y. Adv. Synth. Catal. 2018; 360: 2621
  • 27 Huang H, Smith KB, Brown KB. Angew. Chem. Int. Ed. 2017; 56: 13314
  • 28 Fujihara T, Sawada A, Yamaguchi T, Tani Y, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2017; 56: 1539
  • 29 Kanayama K, Sawada A, Suda K, Fujihara T. J. Org. Chem. 2021; 86: 9869
  • 30 Sakuragi S, Akiba T, Tanahashi T, Fujihara T. Angew. Chem. Int. Ed. 2022; 61: e202202226