Synlett 2023; 34(20): 2351-2360
DOI: 10.1055/a-2069-3913
account
Special Issue Dedicated to Prof. Hisashi Yamamoto

Total Syntheses of 2,2′-Biindolyl Alkaloids via Cyanide-Catalyzed Imino-Stetter Reaction

Jinjae Park
,
Tae Lyn Kim
,
This study was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean Government (NRF-2021R1A2C1012984 and NRF-2021R1A5A6002803 (Center for New Directions in Organic Synthesis)).


Abstract

2,2′-Biindolyl natural products have a long history of applications owing to their unique structural features and biological activities. In this Account, we describe the recent progress achieved by our research group in the total syntheses of several 2,2′-biindolyl natural products using the cyanide-catalyzed imino-Stetter reaction as the key reaction to construct the 2,2′-biindolyl scaffold from 2-aminocinnamic acid derivatives and indole-2-carboxaldehydes. The development of a novel protocol to access 2,2′-bisindole-3-acetic acid derivatives via the cyanide-catalyzed imino-Stetter reaction and its application to the total syntheses of class I (arcyriaflavin A), class II (iheyamines A and B), and class III (calothrixin B) 2,2′-biindolyl natural products are discussed.

1. Introduction

2. Synthesis of 2,2′-Biindolyl Compounds via Cyanide-Catalyzed Imino-Stetter Reaction

3. Total Synthesis of Arcyriaflavin A

4. Total Syntheses of Iheyamines A and B

5. Total Synthesis of Calothrixin B

6. Conclusion



Publication History

Received: 06 March 2023

Accepted after revision: 05 April 2023

Accepted Manuscript online:
05 April 2023

Article published online:
11 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For reviews, see:
    • 1a Sanchez C, Mendez C, Salas JA. Nat. Prod. Rep. 2006; 23: 1007
    • 1b Chambers GE, Sayan AE, Brown RC. D. Nat. Prod. Rep. 2021; 38: 1794
    • 1c Volvoikar R, Torney P. Tetrahedron 2021; 82: 1317567
    • 2a Splitstoser JC, Dillehay TD, Wouters J, Claro A. Sci. Adv. 2016; 2: e1501623
    • 2b Mocquard J, Le Lamer A.-C, Fabre P.-L, Mathieu C, Chastrette C, Vitrai A, Vandenbossche V. Dyes Pigm. 2022; 207: 110675
    • 3a Nettleton DE, Doyle TW, Krishnan B, Matsumoto GK, Clardy J. Tetrahedron Lett. 1985; 26: 4011
    • 3b Pereira ER, Belin L, Sancelme M, Prudhomme M, Ollier M, Rapp M, Severe D, Riou J.-F, Fabbro D, Meye T. J. Med. Chem. 1996; 39: 4471
    • 3c Omura S, Iwai Y, Hirano A, Nakagawa A, Awaya J, Tsuchiya H, Takahashi Y, Masuma R. J. Antibiotics 1977; 30: 275
    • 3d Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F. Biochem. Biophys. Res. Commun. 1986; 135: 397
    • 3e Sasaki T, Ohtani II, Tanaka J, Higa T. Tetrahedron Lett. 1999; 40: 303
    • 3f Rickards RW, Rothschild JM, Wills AC, de Chazal NM, Kirk K, Saliba KJ, Smith GD. Tetrahedron 1999; 55: 13513
    • 3g Tan CJ, Di Y T, Wang YH, Zhang Y, Si YK, Zhang Q, Gao S, Hu XJ, Fang X, Li SF, Hao XJ. Org. Lett. 2010; 12: 2370
  • 4 Several protocols have been developed to access 2,2′-biindolyl derivatives. For selected examples, see ref. 8–10.

    • In this Account, ‘the symmetry of 2,2′-biindolyl compounds’ was determined by the substituent pattern on each phenyl ring of the indole scaffold regardless of the substituent
    • 5a on the pyrrole ring.

      For a proposed biosynthetic pathway of calothrixins A and B, see:
    • 6a Yamabuki A, Fujinawa H, Choshi T, Tohyama H, Matsumoto K, Ohmura K, Nobuhiro J, Hibino S. Tetrahedron Lett. 2006; 47: 5859
    • 6b McErlean CS. P, Sperry J, Blake AJ, Moody CJ. Tetrahedron 2007; 63: 10963
  • 7 For a proposed biosynthetic pathway of trigonoliimines A–C, see: Qi X, Bao H, Tamber UK. J. Am. Chem. Soc. 2011; 133: 10050

    • For selected examples, see:
    • 8a Bergman J, Koch E, Pelcman B. Tetrahedron Lett. 1995; 36: 3945
    • 8b Gilbert EJ, Van Vranken DL. J. Am. Chem. Soc. 1996; 118: 5500
    • 8c Masanori S, Naoki O, Masakazu H, Fumio Y. Heterocycles 1999; 51: 1237
    • 8d Keller PA, Yepuri NR, Kelso MJ, Mariani M, Skelton BW, White AH. Tetrahedron 2008; 64: 7787
    • 8e Liu S, Hao X.-J. Tetrahedron Lett. 2011; 52: 5640
    • 8f Lindsay AC, Leung IK. H, Sperry J. Org. Lett. 2016; 18: 5404

      For selected examples, see:
    • 9a Bergman J, Eklund N. Tetrahedron 1980; 36: 1439
    • 9b Xu X.-H, Liu GK, Azuma A, Tokunaga E, Shibata N. Org. Lett. 2011; 13: 4854
    • 9c Abe T, Ishikura M. Heterocycles 2015; 90: 673

      For selected examples, see:
    • 10a Merlic CA, Mclnnes DM. Tetrahedron Lett. 1997; 38: 7661
    • 10b Meric CA, You Y, Mclnnes DM, Zechman AL, Miller MM, Deng QL. Tetrahedron 2001; 57: 5199
    • 10c Yepuri NR, Haritakul R, Keller PA, Skelton BW, White AH. Tetrahedron Lett. 2009; 50: 2501
    • 10d Li T, Yang Y, Yang P. Chem. Commun. 2019; 55: 353

      2,2′-Biindolyl scaffold could be constructed via the base-catalyzed cyclization of oxalamides bearing o-toluidine derivatives. However, this protocol generally requires harsh reaction conditions, resulting in a limited substrate scope. For selected examples, see:
    • 11a Madelung W. Ann. Chem. 1914; 405: 58
    • 11b Seidel P. Ber. Dtsch. Chem. Ges. B 1944; 77: 788
    • 11c Faseeh SA, Harley-Mason J. J. Chem. Soc. 1957; 4141
    • 11d Capuano L, Drescher S, Hammerer V, Hanisch M. Chem. Ber. 1988; 121: 2259
    • 11e Bergman J, Pelcman B. Tetrahedron 1995; 51: 5631

      For selected examples of the construction of the 2,2′-biindolyl scaffold via Fisher indolization of 2-acetylindole derivatives and aryl hydrazines, see:
    • 12a Kotha S, Saifuddin M, Aswar VR. Org. Biomol. Chem. 2016; 14: 9868
    • 12b Reddy BV. S, Reddy MR, Rao YG, Yadav JS, Sridhar B. Org. Lett. 2013; 15: 464
    • 12c Kimura T, Kanagaki S, Matsui Y, Imoto M, Watanabe T, Shibasaki M. Org. Lett. 2012; 14: 4418
  • 13 For a review of the cyanide-catalyzed imino-Stetter reaction, see: Park E, Jeon J, Cheon C.-H. Chem. Rec. 2018; 18: 1474

    • For the seminal report on the cyanide-catalyzed imino-Stetter reaction, see:
    • 14a Lee S.-J, Seo H.-A, Cheon C.-H. Adv. Synth. Catal. 2016; 358: 1566
    • 14b Seo H.-A, Cheon C.-H. J. Org. Chem. 2016; 81: 7917

      For selected examples of the application of the imino-Stetter reaction to the total synthesis of natural products, see:
    • 15a Kwon SH, Seo H.-A, Cheon C.-H. Org. Lett. 2016; 18: 5280
    • 15b Park E, Cheon C.-H. Adv. Synth. Catal. 2019; 361: 4888
    • 15c Bae C, Park E, Cho C.-G, Cheon C.-H. Org. Lett. 2020; 22: 2354
    • 15d Jeon J, Lee SE, Cheon C.-H. Org. Lett. 2021; 23: 2169
    • 15e Park J, Cheon C.-H. J. Org. Chem. 2022; 87: 4813
  • 16 Lee S, Kim K.-H, Cheon C.-H. Org. Lett. 2017; 19: 2785
  • 17 For the deprotection of indolic N-benzyl group, see: Silva LF. Jr, Craveiro MV. Org. Lett. 2008; 10: 5417
  • 18 Jeon J, Kim HJ, Cheon C.-H. J. Org. Chem. 2020; 85: 8149
  • 19 Jeon J, Cheon C.-H. Org. Lett. 2022; 24: 7128
  • 20 For the isolation of iheyamines A (2) and B (3), see: Sasaki T, Ohtani II, Tanaka J, Higa T. Tetrahedron Lett. 1999; 40: 303
  • 21 Biswas NN, Kutty SK, Barraud N, Iskander GM, Griffith R, Rice SA, Willcox M, Black DStC, Kumar N. Org. Biomol. Chem. 2015; 13: 925

    • For the selected examples of the Wacker oxidation, see:
    • 22a Wang J, Li W, Liu L, Wang B, Zhou Y, Huang S, Wang X. Org. Chem. Front. 2019; 6: 1599
    • 22b Wang Y.-F, Gao Y.-R, Mao S, Zhang Y.-L, Guo D.-D, Yan Z.-L, Guo S.-H, Wang Y.-Q. Org. Lett. 2014; 16: 1610
    • 22c Bosque I, González-Gómez JC, Foubelo F, Yus M. J. Org. Chem. 2012; 77: 780

      For the previous examples of asymmetric decarboxylative allylic alkylation for the synthesis of tertiary α-carbonyl compounds, see:
    • 23a Kita Y, Numajiri Y, Okamoto N, Stoltz BM. Tetrahedron 2015; 71: 6349
    • 23b Trost BM, Michaelis DJ, Charpentier J, Xu J. Angew. Chem. Int. Ed. 2012; 51: 204
    • 23c Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 17180
    • 23d Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 2846
  • 24 Compound 23 possesses axial chirality about the C-2–C-2′ bond owing to the presence of different protecting groups in each indole scaffold. Four peaks were observed in the chiral HPLC chromatogram. The retention times of the major diastereomer of 23 were 40.0 and 58.2 min, while those of the minor diastereomer of 23 were 48.4 and 76.6 min. The enantiomer of the major diastereomer with the second retention time (the third peak observed in the HPLC chromatogram) and that of the minor diastereomer with the first retention time (the second peak observed in the HPLC chromatogram) have the same stereochemical configuration at the α-position of the azepinone scaffold, which was confirmed using HPLC analysis after converting 23 into 19 by removing the Boc groups in 23.
    • 25a Scharnagel D, Goller J, Deibl N, Milius W, Breuning M. Angew. Chem. Int. Ed. 2018; 57: 2432
    • 25b Marcoux D, Bindschädler P, Speed AW. H, Chiu A, Pero JE, Borg GA, Evans DA. Org. Lett. 2011; 13: 3758
  • 26 A significant loss of enantiopurity was observed during the isolation of aldehyde 25. Therefore, we decided to use aldehyde 25 for aldimine formation without isolation.
    • 27a Lipshutz BH, Hackmann C. J. Org. Chem. 1994; 59: 7437
    • 27b Funk RL, Vollhardt KP. J. Am. Chem. Soc. 1980; 102: 5253
  • 28 For an example of benzannulation with PPA, see: Maingot L, Thuaud F, Sissouma D, Collet S, Guingant A, Evain M. Synlett 2008; 263
  • 29 For the beneficial effect of the protecting groups on both the OH and NH moieties in 33 during oxidation using CAN, see ref. 6.