CC BY 4.0 · SynOpen 2023; 07(02): 165-185
DOI: 10.1055/a-2048-8412
graphical review

Chemical Reactions of Indole Alkaloids That Enable Rapid Access to New Scaffolds for Discovery

Derek A. Leas
,
,
Generous financial support from the National Institutes of Health (NIH) is gratefully acknowledged (National Institute of General Medical Sciences – Grant No. R35GM128621) to R.W.H. D.A.L. was supported by the T-32 Team-Based Interdisciplinary Cancer Research Training (TICaRT) program at the University of Florida Health Cancer Center (T32 CA257923).
 


Abstract

This graphical review provides a concise overview of indole alkaloids and chemical reactions that have been reported to transform both these natural products and derivatives to rapidly access new molecular scaffolds. Select biologically active compounds from these synthetic efforts are reported herein.


#

Biographical Sketches

Zoom Image

Derek A. Leas was born and raised in Omaha, Nebraska, USA, where he earned a B.Sc. in medicinal chemistry from the University of Nebraska at Omaha (UNO) in 2014. In 2015, he joined the lab of Prof. Jonathan Vennerstrom at the University of Nebraska Medical Center, where his research focused on the synthesis of novel small molecules for the treatment of the tropical parasitic diseases schistosomiasis and malaria. He obtained his Ph.D. in pharmaceutical sciences in 2020 and joined the group of Prof. Robert Huigens at the University of Florida later that year as a postdoctoral associate, synthesizing complex and diverse compounds from indole alkaloids using various ring cleavage and ring fusion methods.

Zoom Image

Daniel Schultz was raised in Orlando, Florida, USA and earned a B.Sc. in mechanical engineering and a B.Sc. in chemistry from the Florida Institute of Technology (USA) in 2017, the latter of which occurred under the mentorship of Prof. Alan Brown, whose research focuses on physical organic chemistry. Later that year, he joined the lab of Prof. Chenglong Li at the University of Florida, where his research involved computer-aided, structure-based drug design and the synthesis of novel protein–protein interaction inhibitors. He obtained his Ph.D. in medicinal chemistry in 2022, and joined the group of Prof. Robert Huigens at the University of Florida later that year as a postdoctoral associate.

Zoom Image

Robert Huigens received his Ph.D. in chemistry with Prof. Christian Melander at North Carolina State University in 2009. He subsequently moved to the University of Illinois at Urbana-Champaign under the guidance of Prof. Paul Hergenrother, where he was as an American Cancer Society Postdoctoral Fellow. In 2013, he began his independent career as an assistant professor at the University of Florida where he was then promoted to associate professor of medicinal chemistry in 2020. The Huigens laboratory focuses on the utilization of available complex indole alkaloids to access diverse small molecules for drug discovery and the discovery of novel bacterial biofilm-eradicating agents inspired by natural products.

Natural products have played an essential role in medicine due to their abilities to bind to and modulate biological targets critical to disease. Vincristine, vancomycin, morphine, and paclitaxel are complex natural products with unique molecular architectures enabling exquisite drug–target interactions and therapeutic benefit to humankind. Many drug discovery programs have focused on utilizing synthetic chemistry to optimize the inherent biological activity, or pharmacology, of natural products as disease treatments; however, this graphical review focuses on synthetic transformations of indole alkaloids and relevant derivatives that would be expected to significantly alter, or re-engineer, their biological activity profiles.

Our group is developing a ring distortion platform to re-engineer the biological activities of readily available indole alkaloids using a combination of ring cleavage, ring rearrangement, and ring fusion reactions to rapidly generate diverse collections of small molecules bearing high stereochemical complexity. We hypothesize that dramatically altering the inherently complex molecular architectures of indole alkaloids will lead to new biologically active small molecules with activity profiles distinct from the parent indole alkaloid and alternative derivatives with diverse scaffolds.

Upon scanning the literature, one can find a diversity of exciting synthetic transformations that have been applied to numerous indole alkaloids and related indole-based molecules. Although these transformations have been used in total synthesis or methodology development, we view these precedented reactions as potential launching points for ring distortion chemistry. The overarching goals of this graphical review are to provide an overview of useful synthetic transformations of indole alkaloids (and related derivatives) by reaction type and for select indole alkaloids (e.g., yohimbine, vincamine).

This graphical review will begin with some basic background information related to a diversity of biologically active indole alkaloids (there are also many synthetic indole compounds of therapeutic utility in significant disease areas). Then, we will transition the graphical review to published ring cleavage and ring rearrangement transformations on indole alkaloids and derivatives. Finally, we will focus on reported transformations of select indole alkaloids (e.g., yohimbine, reserpine, catharanthine) that have been used, or could be useful, to generate novel scaffolds for drug discovery and chemical biology.

Zoom Image
Figure 1 Select indole alkaloids, their biological activities and clinical applications[1`] [b] [c] [d] [e] [f]
Zoom Image
Figure 2 Indole-promoted C–N ring cleavage reactions employing chloroformates and related electrophiles (Part 1)[2a–2aa]
Zoom Image
Figure 3 Indole-promoted C–N ring cleavage reactions employing chloroformates and related electrophiles (Part 2)[3`] [b] [c] [d] [e] [f] [g] [h] [i] [j] [k] [l] [m] [n] [o]
Zoom Image
Figure 4 Indole-promoted C–N cleavage reactions using the von Braun reaction (Part 1)[2b] [n] , [4`] [b] [c] [d] [e] [f] [g] [h] [i]
Zoom Image
Figure 5 Indole-promoted C–N cleavage reactions using the von Braun reaction (Part 2)[2f] [o] , [5`] [b] [c] [d] [e]
Zoom Image
Figure 6 Indole-promoted Birch ring cleavage reactions[6a–ab]
Zoom Image
Figure 7 (A) Indole-promoted C–N ring cleavage via propiolates and other alkynes. (B) Ring cleavage of quaternary ammonium salts (non-Birch reaction).[2l] [5d] [e] , [6`] [p] , [7`] [b] [c] [d] [e] [f] [g] [h] [i]
Zoom Image
Figure 8 Oxidative rearrangements to 2- or 3-oxindoles[1f] , [8`] [b] [c] [d] [e]
Zoom Image
Figure 9 Reactions of indole alkaloids to yield 2-oxindole derivatives via ring rearrangement[5c] , [9`] [b] [c] [d] [e] [f] [g] [h] [i] [j]
Zoom Image
Figure 10 (A) Ring rearrangements of indole alkaloids to 3-oxindoles. (B) Ring rearrangements of indole alkaloids to spirooxindole-1,3-oxazines.[5d] , [10`] [b] [c] [d] [e] [f] [g] [h] [i] [j]
Zoom Image
Figure 11 Oxidative cleavage and ring rearrangement of indole alkaloids to give quinolones[5e] [9f] [10f] , [11`] [b] [c] [d] [e] [f] [g] [h] [i] [j] [k] [l] [m] [n] [o] [p] [q] [r] [s]
Zoom Image
Figure 12 Reactions that dramatically change yohimbine’s complex structure[5c] [11b] , [12`] [b] [c]
Zoom Image
Figure 13 Reactions that dramatically alter vincamine’s molecular skeleton[5d] [7a] [11i] , [13`] [b] [c] [d] [e] [f]
Zoom Image
Figure 14 Ring distortion efforts of vincamine and yohimbine, and the discovery of biologically active small molecules in significant disease areas (e.g., cancer, opioid addiction, malaria)[5c] [d] [14a] [b]
Zoom Image
Figure 15 Chemical reactions of reserpine that significantly change its architecture[2aa,9j,10b,c,i,12b] , [15`] [b] [c] [d]
Zoom Image
Figure 16 Reactions that alter catharanthine’s complex structure[7g] [10h] , [16`] [b] [c]
Zoom Image
Figure 17 Chemical reactions reported to dramatically change evodiamine’s scaffold[10j] [11h] , [17`] [b] [c] [d] [e] [f] [g] [h] [i] [j] [k]

#

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

We are grateful to current and former members of the Huigens research group who contributed to advances in this area, including both the chemical synthesis and structure elucidation of diverse and complex small molecules synthesized from readily available indole alkaloids and derivatives.

  • References

    • 1a O’Connor S, Maresh JJ. Nat. Prod. Rep. 2006; 23: 532
    • 1b Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1c Stöckigt J, Antonchick AP, Wu F, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
    • 1d Sears JE, Boger DL. Acc. Chem. Res. 2015; 48: 653
    • 1e Carney DW, Lukesh JC, Brody DM, Brütsch MM, Boger DL. Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 9691
    • 1f Norwood VM, Huigens III RH. ChemBioChem 2019; 20: 2273
    • 2a Dolby LJ, Sakai S.-I. J. Am. Chem. Soc. 1964; 86: 1890
    • 2b Sakai S.-I, Kubo A, Katano K, Shinma N. Yakugaku Zasshi 1973; 93: 1165
    • 2c Harley-Mason J. Atta-ur-Rahman Tetrahedron 1980; 36: 1057
    • 2d Calverley MJ. J. Chem. Soc., Chem. Commun. 1981; 1209
    • 2e Liu CT, Sun SC, Yu QS. J. Org. Chem. 1983; 48: 44
    • 2f Schill G, Löwer H, Priester CU, Windhövel UF, Fritz H. Tetrahedron 1987; 43: 3729
    • 2g Schill G, Priester CU, Windhövel UF, Fritz H. Tetrahedron 1987; 43: 3747
    • 2h Magnus P, Mugrage B, DeLuca MR, Cain GA. J. Am. Chem. Soc. 1990; 112: 5220
    • 2i Magnus P, Mugrage B, DeLuca M, Cain GA. J. Am. Chem. Soc. 1989; 111: 786
    • 2j Schill G, Priester CU, Windhövel UF, Fritz H. Tetrahedron 1990; 46: 1211
    • 2k Magnus P, Giles M, Bonnert R, Johnson G, McQuire L, DeLuca M, Merritt A, Kim CS, Vicker N. J. Am. Chem. Soc. 1993; 115: 8116
    • 2l Foster GH, Harley-Mason J, Waterfield WR. Chem. Commun. 1967; 21
    • 2m Sakai S.-I, Yamanaka E, Dolby LJ. Heterocycles 1976; 4: 981
    • 2n Banks BJ, Calverley MJ, Edwards PD, Harley-Mason J. Tetrahedron Lett. 1981; 22: 1631
    • 2o Calverley MJ, Harley-Mason J, Quarrie SA, Edwards PD. Tetrahedron 1981; 37: 1547
    • 2p Calverley MJ. J. Chem. Res., Miniprint 1983; 8: 1848
    • 2q Schill G, Priester CU, Windhövel UF, Fritz H. Helv. Chim. Acta 1986; 69: 438
    • 2r Schill G, Priester CU, Windhövel UF, Fritz H. Tetrahedron 1987; 43: 3765
    • 2s Takayama H, Masubuchi K, Kitajima M, Aimi N, Sakai S.-I. Tetrahedron 1989; 45: 1327
    • 2t Takajama H, Kitajima M, Wongseripipatana S, Sakai S.-I. J. Chem. Soc., Perkin Trans. 1 1989; 1075
    • 2u Takayama H, Odaka H, Aimi N, Sakai S.-I. Tetrahedron Lett. 1990; 31: 5483
    • 2v Mahboobi S, Wagner W, Burgemeister T, Wiegrebe W. Arch. Pharm. 1994; 327: 463
    • 2w Fernàndez J.-C, Valls N, Bosch J, Bonjoch J. J. Chem. Soc., Chem. Commun. 1995; 2317
    • 2x Bonjoch J, Fernàndez J.-C, Valls N. J. Org. Chem. 1998; 63: 7338
    • 2y Magnus P, Gazzard L, Hobson L, Payne AH, Lynch V. Tetrahedron Lett. 1999; 40: 5135
    • 2z Magnus P, Gazzard L, Hobson L, Payne AH, Rainey TJ, Westlund N, Lynch V. Tetrahedron 2002; 58: 3423
    • 2aa Kim Y, Heo J, Kim D, Chang S, Seo S. Nat. Commun. 2020; 11: 4761
    • 3a Takayama H, Tominaga Y, Kitajima M, Aimi N, Sakai S.-I. J. Org. Chem. 1994; 59: 4381
    • 3b Mahboobi S, Wagner W, Burgemeister T. Arch. Pharm. 1995; 328: 371
    • 3c Sattely ES, Meek SJ, Malcolmson SJ, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 943
    • 3d Fokas D, Wang Z. Synth. Commun. 2008; 38: 3816
    • 3e Fokas D, Kaselj M, Isome Y, Wang Z. ACS Comb. Sci. 2013; 15: 49
    • 3f Fokas D, Hamzik JA. Synlett 2009; 581
    • 3g Magnus P, Ladlow M, Elliott J, Kim CS. J. Chem. Soc., Chem. Commun. 1989; 518
    • 3h Magnus P, Mendoza JS, Stamford A, Ladlow M, Willis P. J. Am. Chem. Soc. 1992; 114: 10232
    • 3i Magnus P, Stamford A, Ladlow M. J. Am. Chem. Soc. 1990; 112: 8210
    • 3j Magnus P, Mendoza J. Tetrahedron Lett. 1992; 33: 899
    • 3k Yang J, Rallapalli SK, Cook JM. Tetrahedron Lett. 2010; 51: 815
    • 3l Rannoux C, Roussi F, Martin M.-T, Guéritte F. Org. Biomol. Chem. 2011; 9: 4873
    • 3m Kitajima M, Watanabe K, Maeda H, Kogure N, Takayama H. Org. Lett. 2016; 18: 1912
    • 3n Yang Z, Tan Q, Jiang Y, Yang J, Su X, Qiao Z, Zhou W, He L, Qiu H, Zhang M. Angew. Chem. Int. Ed. 2021; 60: 13105
    • 3o Li W, Wang Y, Qi H, Shi R, Li J, Chen S, Xu X.-M, Wang W.-L. Org. Biomol. Chem. 2021; 19: 8086
    • 4a Albright JD, Goldmon L. J. Am. Chem. Soc. 1969; 91: 4317
    • 4b Lampe-Tirions M, Kaisin M, Pecher J. Bull. Soc. Chim. Belg. 1971; 80: 27
    • 4c Costa G, Riche C, Husson H.-P. Tetrahedron 1977; 33: 315
    • 4d Kutney JP, Eigendorf GK, Matsue H, Murai A, Tanaka K, Sung WL, Wada K, Worth BR. J. Am. Chem. Soc. 1978; 100: 938
    • 4e Sakai S.-I, Shinma N. Heterocycles 1976; 4: 985
    • 4f Sakai S.-I, Yamamoto Y, Hasegawa S. Chem. Pharm. Bull. 1980; 28: 3454
    • 4g Sakai S.-I, Yamamoto Y, Hasegawa S. Heterocycles 1980; 14: 85
    • 4h Wan AS. C, Yokota M, Ogata K, Aimi N, Sakai S.-I. Heterocycles 1987; 26: 1211
    • 4i Koike T, Takayama H, Sakai S.-I. Chem. Pharm. Bull. 1991; 39: 1677
    • 5a Banerji A, Siddhanta AK. J. Indian Chem. Soc. 1982; 59: 542
    • 5b Takayama H, Horigome M, Aimi N, Sakai S.-I. Tetrahedron Lett. 1990; 31: 1287
    • 5c Paciaroni NG, Ratnayake R, Matthew JH, Norwood VM, Arnold AC, Dang LH, Luesch H, Huigens III RH. Chem. Eur. J. 2017; 23: 4327
    • 5d Norwood VM, Brice-Tutt AC, Eans SO, Stacy HM, Shi G, Ratnayake R, Rocca JR, Abboud KA, Li C, Luesch H, McLaughlin JP, Huigens III RH. J. Med. Chem. 2020; 63: 5119
    • 5e Srinivasulu V, Srikanth G, Khanfar MA, Abu-Yousef IA, Majdalawieh AF, Mazitschek R, Setty SC, Sebastian A, Al-Tel TH. J. Org. Chem. 2022; 87: 1377
    • 6a Wenkert E, Garratt S, Dave KG. Can. J. Chem. 1964; 42: 489
    • 6b Herbst D, Rees R, Hughes GA, Smith H. J. Med. Chem. 1966; 9: 864
    • 6c Kutney JP, Abdurahman N, Le Quesne P, Piers E, Vlattas I. J. Am. Chem. Soc. 1966; 88: 3656
    • 6d Kutney JP, Cretney WJ, Le Quesne P, McKague B, Piers E. J. Am. Chem. Soc. 1966; 88: 4756
    • 6e Harley-Mason J, Atta-ur-Rahman, Beisler JA. Chem. Commun. 1966; 743
    • 6f Dolby L, Gribble G. J. Org. Chem. 1967; 32: 1391
    • 6g Takano S, Hirama M, Ogasawara K. J. Org. Chem. 1980; 45: 3729
    • 6h Döé de Maindreville M, Lévy J. Bull. Soc. Chim. Fr. 1981; 2: 179
    • 6i Wenkert E, Halls TD. J, Kwart LD, Magnusson G, Showalter HD. H. Tetrahedron 1981; 37: 4017
    • 6j Takano S, Hirama M, Ogasawara K. Tetrahedron Lett. 1982; 23: 881
    • 6k Kalaus G, Malkieh N, Katona I, Kajtar-Peredy M, Koritsanszky T, Kalman A, Szabo L, Szántay C. J. Org. Chem. 1985; 50: 3760
    • 6l Abadi AH, Lankow S, Hoefgen B, Decker M, Kassack MU, Lehmann J. Arch. Pharm. 2002; 335: 367
    • 6m Robaa D, Enzensperger C, AbdulAzm SE, Hefnawy MM, El-Subbagh HI, Wani TA, Lehmann J. J. Med. Chem. 2011; 54: 7422
    • 6n Kutney JP, Abdurahman N, Gletsos C, Le Quesne P, Piers E, Vlattas I. J. Am. Chem. Soc. 1970; 92: 1727
    • 6o Takano S, Chiba K, Yonaga M, Ogasawara K. J. Chem. Soc., Chem. Commun. 1980; 616
    • 6p Atta-ur-Rahman; Beisler JA, Harley-Mason J. Tetrahedron 1980; 36: 1063
    • 6q Takano S, Yonaga M, Chiba K, Ogasawara K. Tetrahedron Lett. 1980; 21: 3697
    • 6r Takano S, Uchida W, Hatakeyama S, Ogasawara K. Chem. Lett. 1982; 11: 733
    • 6s Node M, Nagasawa H, Fuji K. J. Am. Chem. Soc. 1987; 109: 7901
    • 6t Node M, Nagasawa H, Fuji K. J. Org. Chem. 1990; 55: 517
    • 6u Temme O, Taj S.-A, Andersson PG. J. Org. Chem. 1998; 63: 6007
    • 6v Witt T, Hock FJ, Lehmann J. J. Med. Chem. 2000; 43: 2079
    • 6w Rostom SA, Farghaly AM, Soliman FS, el-Semary MM, Elz S, Lehmann J. Arch. Pharm. 2001; 334: 241
    • 6x Kanada RM, Ogasawara K. Tetrahedron Lett. 2001; 42: 7311
    • 6y Kobayashi J, Sekiguchi M, Shimamoto S, Shigemori H, Ishiyama H, Ohsaki A. J. Org. Chem. 2002; 67: 6449
    • 6z Hoefgen B, Decker M, Mohr P, Schramm AM, Rostom SA. F, El-Subbagh H, Schweikert PM, Rudolf DR, Kassack MU, Lehmann J. J. Med. Chem. 2006; 49: 760
    • 6aa Enzensperger C, Kilian S, Ackermann M, Koch A, Kelch K, Lehmann J. Bioorg. Med. Chem. Lett. 2007; 17: 1399
    • 6ab Robaa D, Kretschmer R, Siol O, Abulazm SE, Elkhawass E, Lehmann J, Enzensperger C. Arch. Pharm. 2010; 344: 28
    • 7a Voskressensky LG, Borisova TN, Titov AA, Listratova AV, Kulikova LN, Varlamov AV, Khrustalev VN, Aleksandrov GG. Russ. Chem. Bull. 2012; 61: 1231
    • 7b Voskressensky LG, Borisova TN, Kulikova LN, Varlamov AV, Catto M, Altomare C, Caroti A. Eur. J. Org. Chem. 2004; 2004: 3128
    • 7c Voskressensky LG, Borisova TN, Kulikova LN, Doglova EG, Kleimenov AI, Sorokina EA, Titov AA, Varlamov AV. Chem. Heterocycl. Compd. 2007; 43: 587
    • 7d Zhang L, Chang L, Hu H, Wang H, Yao Z.-J, Wang S. Chem. Eur. J. 2014; 20: 2925
    • 7e Harley-Mason J. Atta-ur-Rahman Chem. Commun. 1967; 208
    • 7f Takano S, Murakata C, Ogasawara K. Heterocycles 1980; 14: 1301
    • 7g Lim H, Seong S, Kim Y, Seo S, Han S. J. Am. Chem. Soc. 2021; 143: 19966
    • 7h Bailey PD, Hollinshead SP. Tetrahedron Lett. 1987; 28: 2879
    • 7i Royer D, Yu YL, Hugel G, Lévy J. Tetrahedron 1998; 54: 6507
    • 8a Movassaghi M, Schmidt MA, Ashenhurst JA. Org. Lett. 2008; 10: 4009
    • 8b Trost BM, Brennan MK. Synthesis 2009; 3003
    • 8c Kaur M, Singh M, Chadha N, Silakari O. Eur. J. Med. Chem. 2016; 123: 858
    • 8d Mahadu YM, Shivani M, Murugesan S, Kondapalli VG, Sekhar C. Biomed. Pharmacother. 2021; 141: 111842
    • 8e Boddy AJ, Bull JA. Org. Chem. Front. 2021; 8: 1026
    • 9a Wenkert E, Bindra JS, Chang C.-J, Cochran DW, Schell FM. Acc. Chem. Res. 1974; 7: 46
    • 9b Kuntiyong P, Inprung N, Phakdeeyothin K, Buaphan A, Thammapichai K. Tetrahedron 2020; 76: 131261
    • 9c Bian Z.-G, Marvin CC, Martin SF. J. Am. Chem. Soc. 2013; 135: 10886
    • 9d Chen P, Yang H, Zhang H, Chen W, Zhang Z, Zhang J, Li H, Wang X, Xie X, She X. Org. Lett. 2020; 22: 2022
    • 9e Edmondson S, Danishefsky SJ, Sepp-Lorenzino L, Rosen N. J. Am. Chem. Soc. 1999; 121: 2147
    • 9f Xu J, Liang L, Zheng H, Chi YR, Tong R. Nat. Commun. 2019; 10: 4754
    • 9g Qian C, Li P, Sun J. Angew. Chem. Int. Ed. 2021; 60: 5871
    • 9h Martin SF, Mortimore M. Tetrahedron Lett. 1990; 31: 4557
    • 9i Mercado-Marin EV, Garcia-Reynaga P, Romminger S, Pimenta EF, Romney DK, Lodewyk MW, Williams DE, Andersen RJ, Miller SJ, Tantillo DJ, Berlinck RG. S, Sarpong R. Nature 2014; 509: 318
    • 9j Finch N, Gemenden CW, Hsu IH.-C, Taylor WI. J. Am. Chem. Soc. 1963; 85: 1520
    • 10a Zhao G, Xie X, Sun H, Yuan Z, Zhong Z, Tang S, She X. Org. Lett. 2016; 18: 2447
    • 10b Stahl R, Borschberg H.-J. Helv. Chim. Acta 1994; 77: 1331
    • 10c Finch N, Gemenden CW, Hsu IH.-C, Kerr A, Sim GA, Taylor WI. J. Am. Chem. Soc. 1965; 87: 2229
    • 10d Phillipson JD, Hemingway SR. Phytochemistry 1975; 8: 1855
    • 10e Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, Grinnell SG, Subrath JJ, Warner E, Kalra S, Hunkele A, Pagirsky J, Eans SO, Medina JM, Xu J, Pan YX, Borics A, Pasternak GW, McLaughlin JP, Majumdar S. J. Med. Chem. 2016; 59: 8381
    • 10f Takayama H, Ishikawa H, Kurihara M, Kitajima M, Aimi N, Ponglux D, Koyama F, Matsumoto K, Moriyama T, Yamamoto LT, Watanabe K, Murayama T, Horie S. J. Med. Chem. 2002; 45: 1949
    • 10g Kamble SH, León F, King TI, Berthold EC, Lopera-Londoño C, Siva Rama Raju K, Hampson AJ, Sharma A, Avery BA, McMahon LR, McCurdy CR. ACS Pharmacol. Transl. Sci. 2020; 3: 1063
    • 10h Keglevich A, Mayer S, Pápai R, Szigetvári Á, Sánta Z, Dékány M, Szántay CJr, Keglevich P, Hazai L. Molecules 2018; 23: 2574
    • 10i Drathen TV, Hoffman F, Brasholz M. Chem. Eur. J. 2018; 24: 10253
    • 10j Su Y, Huang G, Ye F, Qiao P, Ye J, Gao Y, Chen H. Org. Biomol. Chem. 2019; 17: 8811
    • 11a Witkop B, James B, Patrick JB, Rosenblum MJ. J. Am. Chem. Soc. 1951; 73: 2641
    • 11b Witkop B, Goodwin S. J. Am. Chem. Soc. 1953; 75: 3371
    • 11c Janot M.-M, Goutarel R, Le Hir A, Tsatsasa G, Prelog V. Helv. Chim. Acta 1955; 38: 1073
    • 11d Winterfeldt E. Liebigs Ann. Chem. 1971; 745: 23
    • 11e Nakagawa M, Matsuki K, Hasegawa K, Hino T. J. Chem. Soc., Chem. Commun. 1982; 742
    • 11f Carniaux JF, Kan-Fan C, Royer J, Husson HP. Tetrahedron Lett. 1997; 38: 2997
    • 11g Jiang W, Alford VC, Qiu Y, Bhattacharjee S, John TW, Haynes-Johnson D, Kraft PJ, Lundeen SG, Sui Z. Bioorg. Med. Chem. 2004; 12: 1505
    • 11h Pin F, Comesse S, Daïch A. Tetrahedron 2011; 27: 5564
    • 11i Lancefield CS, Zhou L, Lébl T, Slawin AM. Z, Westwood NJ. Org. Lett. 2012; 14: 6166
    • 11j Roxburgh CJ. Tetrahedron 1993; 49: 10749
    • 11k Mental M, Breinbauer R. Curr. Org. Chem. 2007; 11: 159
    • 11l Tratrat C, Giorgi-Renault S, Husson H.-P. Synlett 1998; 1071
    • 11m Sigaut F, Didierdefresse B, Lévy J. Tetrahedron 2000; 56: 9641
    • 11n Afsah EM, Fadda AA, Bondock S, Hammouda MM. Z. Naturforsch. 2009; 64b: 415
    • 11o Mentel M, Peters M, Albering J, Breinbauer R. Tetrahedron 2011; 67: 965
    • 11p Liu S, Scott JS, Kozmin SA. J. Org. Chem. 2013; 78: 8645
    • 11q Yang Y, Bai Y, Sun S, Dai M. Org. Lett. 2014; 16: 6216
    • 11r Wu K, Fang C, Kaur S, Liu P, Wang T. Synthesis 2018; 50: 2897
    • 11s Leas DA, Dong Y, Garrison J, Wang X, Ezell E, Stack DE, Vennerstrom JL. J. Org. Chem. 2020; 85: 2846
    • 12a Lachkar D, Denizot N, Bernadat G, Ahamada K, Beniddir MA, Dumontet V, Gallard J.-F, Guillot R, Leblanc K, N’nang EO, Turpin V, Kouklovsky C, Poupon E, Evanno L, Vincent G. Nat. Chem. 2017; 9: 793
    • 12b Takayama H, Misawa K, Okada N, Ishikawa H, Kitajima M, Hatori Y, Murayama T, Wongseripipatana S, Tashima K, Matsumoto K, Horie S. Org Lett. 2006; 8: 5705
    • 12c Ryckaert B, Hullaert J, Van Hecke K, Winne JM. Org. Lett. 2022; 24: 4119
    • 13a Randriambola L, Quirion J.-C, Kan-Fan C, Husson H.-P. Tetrahedron 1987; 28: 2123
    • 13b Kalaus G, Malkieh N, Kajtár-Peredy M, Brlik J, Szabó L, Szántay C. Heterocycles 1988; 27: 1179
    • 13c Honty K, Szánty C, Kolonits P, Demeter A, Szántay C. Tetrahedron 1993; 49: 10421
    • 13d Nemes A, Szántay CJr, Czibula L, Greiner I. Heterocycles 2007; 11: 2347
    • 13e Woods JR, Riofski MV, Zheng MM, O’Banion MA, Mo H, Kirshner J, Colby DA. Bioorg. Med. Chem. Lett. 2013; 23: 5865
    • 13f Ma Y.-H, Ge S.-W, Wang W, Sun BW. J. Mol. Struct. 2015; 1097: 87
    • 14a Norwood VM, Murillo-Solano C, Goertzen MG, Brummel BR, Perry DL, Rocca JR, Chakrabarti D, Huigens III RH. ACS Omega 2021; 6: 20455
    • 14b Paciaroni NG, Perry DL, Norwood VM, Solano CM, Huigens III RH. ACS Infect. Dis. 2020; 6: 159
    • 15a Gaskell AJ, Joule JA. Tetrahedron 1968; 24: 5115
    • 15b Sakai SI, Ogawa M. Chem. Pharm. Bull. 1978; 26: 678
    • 15c Ross SP, Hoye TR. Nat. Chem. 2017; 9: 523
    • 15d Mukaiyama T, Narasaka K, Hokonok H. J. Am. Chem. Soc. 1969; 91: 4317
    • 16a Beatty JW, Stephenson CR. J. J. Am. Chem. Soc. 2014; 136: 10270
    • 16b Gotoh H, Sears JE, Eschenmoser A, Boger DL. J. Am. Chem. Soc. 2012; 134: 13240
    • 16c Seong S, Lim H, Han S. Chem 2019; 5: 353
    • 17a Chen H, Ye F, Luo J, Gao Y. Org. Lett. 2019; 21: 7475
    • 17b Guo W, Wang X, Zhang J, Zhang T, Lv H, Zhao C. Chem. Biol. Drug Des. 2022; 99: 535
    • 17c Jiang J, Hu C. Molecules 2009; 14: 1852
    • 17d Dong G, Wang S, Miao Z, Yao J, Zhang Y, Guo Z, Zhang W, Sheng C. J. Med. Chem. 2012; 55: 7593
    • 17e Li ZG, Dong GQ, Wang SZ, Miao ZY, Yao JZ, Zhang WN, Sheng CQ. Chin. Chem. Lett. 2015; 26: 267
    • 17f Koltai T. Open Access J. Oncol. Med. 2018; 1: 37
    • 17g Hu X, Li D, Chu C, Li X, Wang X, Jia Y, Hua H, Xu F. Int. J. Mol. Sci. 2018; 19: 3403
    • 17h Zhou P, Li XP, Jiang R, Chen Y, Lv XT, Guo XX, Tian K, Yuan DZ, Lv YW, Ran JH, Li J, Chen DL. Anticancer Drugs 2019; 30: 611
    • 17i Jiang ZB, Huang JM, Xie YJ, Zhang YZ, Chang C, Lai HL, Wang W, Yao XJ, Fan XX, Wu QB, Xie C, Wang MF. J. Exp. Clin. Cancer Res. 2020; 39: 249
    • 17j Chen S, Bi K, Wu S, Li Y, Huang Y, Sheng C, Dong G. Eur. J. Med. Chem. 2021; 220: 113544
    • 17k Liang Y, Zhang H, Zhang X, Peng Y, Deng J, Wang Y, Li R, Liu L, Wang Z. Bioorg. Chem. 2022; 127: 105981

Corresponding Author

Robert W. Huigens III
Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida
1345 Center Drive, Gainesville, FL 32610
USA   

Publication History

Received: 31 January 2023

Accepted: 07 March 2023

Accepted Manuscript online:
07 March 2023

Article published online:
11 May 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

    • 1a O’Connor S, Maresh JJ. Nat. Prod. Rep. 2006; 23: 532
    • 1b Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1c Stöckigt J, Antonchick AP, Wu F, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
    • 1d Sears JE, Boger DL. Acc. Chem. Res. 2015; 48: 653
    • 1e Carney DW, Lukesh JC, Brody DM, Brütsch MM, Boger DL. Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 9691
    • 1f Norwood VM, Huigens III RH. ChemBioChem 2019; 20: 2273
    • 2a Dolby LJ, Sakai S.-I. J. Am. Chem. Soc. 1964; 86: 1890
    • 2b Sakai S.-I, Kubo A, Katano K, Shinma N. Yakugaku Zasshi 1973; 93: 1165
    • 2c Harley-Mason J. Atta-ur-Rahman Tetrahedron 1980; 36: 1057
    • 2d Calverley MJ. J. Chem. Soc., Chem. Commun. 1981; 1209
    • 2e Liu CT, Sun SC, Yu QS. J. Org. Chem. 1983; 48: 44
    • 2f Schill G, Löwer H, Priester CU, Windhövel UF, Fritz H. Tetrahedron 1987; 43: 3729
    • 2g Schill G, Priester CU, Windhövel UF, Fritz H. Tetrahedron 1987; 43: 3747
    • 2h Magnus P, Mugrage B, DeLuca MR, Cain GA. J. Am. Chem. Soc. 1990; 112: 5220
    • 2i Magnus P, Mugrage B, DeLuca M, Cain GA. J. Am. Chem. Soc. 1989; 111: 786
    • 2j Schill G, Priester CU, Windhövel UF, Fritz H. Tetrahedron 1990; 46: 1211
    • 2k Magnus P, Giles M, Bonnert R, Johnson G, McQuire L, DeLuca M, Merritt A, Kim CS, Vicker N. J. Am. Chem. Soc. 1993; 115: 8116
    • 2l Foster GH, Harley-Mason J, Waterfield WR. Chem. Commun. 1967; 21
    • 2m Sakai S.-I, Yamanaka E, Dolby LJ. Heterocycles 1976; 4: 981
    • 2n Banks BJ, Calverley MJ, Edwards PD, Harley-Mason J. Tetrahedron Lett. 1981; 22: 1631
    • 2o Calverley MJ, Harley-Mason J, Quarrie SA, Edwards PD. Tetrahedron 1981; 37: 1547
    • 2p Calverley MJ. J. Chem. Res., Miniprint 1983; 8: 1848
    • 2q Schill G, Priester CU, Windhövel UF, Fritz H. Helv. Chim. Acta 1986; 69: 438
    • 2r Schill G, Priester CU, Windhövel UF, Fritz H. Tetrahedron 1987; 43: 3765
    • 2s Takayama H, Masubuchi K, Kitajima M, Aimi N, Sakai S.-I. Tetrahedron 1989; 45: 1327
    • 2t Takajama H, Kitajima M, Wongseripipatana S, Sakai S.-I. J. Chem. Soc., Perkin Trans. 1 1989; 1075
    • 2u Takayama H, Odaka H, Aimi N, Sakai S.-I. Tetrahedron Lett. 1990; 31: 5483
    • 2v Mahboobi S, Wagner W, Burgemeister T, Wiegrebe W. Arch. Pharm. 1994; 327: 463
    • 2w Fernàndez J.-C, Valls N, Bosch J, Bonjoch J. J. Chem. Soc., Chem. Commun. 1995; 2317
    • 2x Bonjoch J, Fernàndez J.-C, Valls N. J. Org. Chem. 1998; 63: 7338
    • 2y Magnus P, Gazzard L, Hobson L, Payne AH, Lynch V. Tetrahedron Lett. 1999; 40: 5135
    • 2z Magnus P, Gazzard L, Hobson L, Payne AH, Rainey TJ, Westlund N, Lynch V. Tetrahedron 2002; 58: 3423
    • 2aa Kim Y, Heo J, Kim D, Chang S, Seo S. Nat. Commun. 2020; 11: 4761
    • 3a Takayama H, Tominaga Y, Kitajima M, Aimi N, Sakai S.-I. J. Org. Chem. 1994; 59: 4381
    • 3b Mahboobi S, Wagner W, Burgemeister T. Arch. Pharm. 1995; 328: 371
    • 3c Sattely ES, Meek SJ, Malcolmson SJ, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 943
    • 3d Fokas D, Wang Z. Synth. Commun. 2008; 38: 3816
    • 3e Fokas D, Kaselj M, Isome Y, Wang Z. ACS Comb. Sci. 2013; 15: 49
    • 3f Fokas D, Hamzik JA. Synlett 2009; 581
    • 3g Magnus P, Ladlow M, Elliott J, Kim CS. J. Chem. Soc., Chem. Commun. 1989; 518
    • 3h Magnus P, Mendoza JS, Stamford A, Ladlow M, Willis P. J. Am. Chem. Soc. 1992; 114: 10232
    • 3i Magnus P, Stamford A, Ladlow M. J. Am. Chem. Soc. 1990; 112: 8210
    • 3j Magnus P, Mendoza J. Tetrahedron Lett. 1992; 33: 899
    • 3k Yang J, Rallapalli SK, Cook JM. Tetrahedron Lett. 2010; 51: 815
    • 3l Rannoux C, Roussi F, Martin M.-T, Guéritte F. Org. Biomol. Chem. 2011; 9: 4873
    • 3m Kitajima M, Watanabe K, Maeda H, Kogure N, Takayama H. Org. Lett. 2016; 18: 1912
    • 3n Yang Z, Tan Q, Jiang Y, Yang J, Su X, Qiao Z, Zhou W, He L, Qiu H, Zhang M. Angew. Chem. Int. Ed. 2021; 60: 13105
    • 3o Li W, Wang Y, Qi H, Shi R, Li J, Chen S, Xu X.-M, Wang W.-L. Org. Biomol. Chem. 2021; 19: 8086
    • 4a Albright JD, Goldmon L. J. Am. Chem. Soc. 1969; 91: 4317
    • 4b Lampe-Tirions M, Kaisin M, Pecher J. Bull. Soc. Chim. Belg. 1971; 80: 27
    • 4c Costa G, Riche C, Husson H.-P. Tetrahedron 1977; 33: 315
    • 4d Kutney JP, Eigendorf GK, Matsue H, Murai A, Tanaka K, Sung WL, Wada K, Worth BR. J. Am. Chem. Soc. 1978; 100: 938
    • 4e Sakai S.-I, Shinma N. Heterocycles 1976; 4: 985
    • 4f Sakai S.-I, Yamamoto Y, Hasegawa S. Chem. Pharm. Bull. 1980; 28: 3454
    • 4g Sakai S.-I, Yamamoto Y, Hasegawa S. Heterocycles 1980; 14: 85
    • 4h Wan AS. C, Yokota M, Ogata K, Aimi N, Sakai S.-I. Heterocycles 1987; 26: 1211
    • 4i Koike T, Takayama H, Sakai S.-I. Chem. Pharm. Bull. 1991; 39: 1677
    • 5a Banerji A, Siddhanta AK. J. Indian Chem. Soc. 1982; 59: 542
    • 5b Takayama H, Horigome M, Aimi N, Sakai S.-I. Tetrahedron Lett. 1990; 31: 1287
    • 5c Paciaroni NG, Ratnayake R, Matthew JH, Norwood VM, Arnold AC, Dang LH, Luesch H, Huigens III RH. Chem. Eur. J. 2017; 23: 4327
    • 5d Norwood VM, Brice-Tutt AC, Eans SO, Stacy HM, Shi G, Ratnayake R, Rocca JR, Abboud KA, Li C, Luesch H, McLaughlin JP, Huigens III RH. J. Med. Chem. 2020; 63: 5119
    • 5e Srinivasulu V, Srikanth G, Khanfar MA, Abu-Yousef IA, Majdalawieh AF, Mazitschek R, Setty SC, Sebastian A, Al-Tel TH. J. Org. Chem. 2022; 87: 1377
    • 6a Wenkert E, Garratt S, Dave KG. Can. J. Chem. 1964; 42: 489
    • 6b Herbst D, Rees R, Hughes GA, Smith H. J. Med. Chem. 1966; 9: 864
    • 6c Kutney JP, Abdurahman N, Le Quesne P, Piers E, Vlattas I. J. Am. Chem. Soc. 1966; 88: 3656
    • 6d Kutney JP, Cretney WJ, Le Quesne P, McKague B, Piers E. J. Am. Chem. Soc. 1966; 88: 4756
    • 6e Harley-Mason J, Atta-ur-Rahman, Beisler JA. Chem. Commun. 1966; 743
    • 6f Dolby L, Gribble G. J. Org. Chem. 1967; 32: 1391
    • 6g Takano S, Hirama M, Ogasawara K. J. Org. Chem. 1980; 45: 3729
    • 6h Döé de Maindreville M, Lévy J. Bull. Soc. Chim. Fr. 1981; 2: 179
    • 6i Wenkert E, Halls TD. J, Kwart LD, Magnusson G, Showalter HD. H. Tetrahedron 1981; 37: 4017
    • 6j Takano S, Hirama M, Ogasawara K. Tetrahedron Lett. 1982; 23: 881
    • 6k Kalaus G, Malkieh N, Katona I, Kajtar-Peredy M, Koritsanszky T, Kalman A, Szabo L, Szántay C. J. Org. Chem. 1985; 50: 3760
    • 6l Abadi AH, Lankow S, Hoefgen B, Decker M, Kassack MU, Lehmann J. Arch. Pharm. 2002; 335: 367
    • 6m Robaa D, Enzensperger C, AbdulAzm SE, Hefnawy MM, El-Subbagh HI, Wani TA, Lehmann J. J. Med. Chem. 2011; 54: 7422
    • 6n Kutney JP, Abdurahman N, Gletsos C, Le Quesne P, Piers E, Vlattas I. J. Am. Chem. Soc. 1970; 92: 1727
    • 6o Takano S, Chiba K, Yonaga M, Ogasawara K. J. Chem. Soc., Chem. Commun. 1980; 616
    • 6p Atta-ur-Rahman; Beisler JA, Harley-Mason J. Tetrahedron 1980; 36: 1063
    • 6q Takano S, Yonaga M, Chiba K, Ogasawara K. Tetrahedron Lett. 1980; 21: 3697
    • 6r Takano S, Uchida W, Hatakeyama S, Ogasawara K. Chem. Lett. 1982; 11: 733
    • 6s Node M, Nagasawa H, Fuji K. J. Am. Chem. Soc. 1987; 109: 7901
    • 6t Node M, Nagasawa H, Fuji K. J. Org. Chem. 1990; 55: 517
    • 6u Temme O, Taj S.-A, Andersson PG. J. Org. Chem. 1998; 63: 6007
    • 6v Witt T, Hock FJ, Lehmann J. J. Med. Chem. 2000; 43: 2079
    • 6w Rostom SA, Farghaly AM, Soliman FS, el-Semary MM, Elz S, Lehmann J. Arch. Pharm. 2001; 334: 241
    • 6x Kanada RM, Ogasawara K. Tetrahedron Lett. 2001; 42: 7311
    • 6y Kobayashi J, Sekiguchi M, Shimamoto S, Shigemori H, Ishiyama H, Ohsaki A. J. Org. Chem. 2002; 67: 6449
    • 6z Hoefgen B, Decker M, Mohr P, Schramm AM, Rostom SA. F, El-Subbagh H, Schweikert PM, Rudolf DR, Kassack MU, Lehmann J. J. Med. Chem. 2006; 49: 760
    • 6aa Enzensperger C, Kilian S, Ackermann M, Koch A, Kelch K, Lehmann J. Bioorg. Med. Chem. Lett. 2007; 17: 1399
    • 6ab Robaa D, Kretschmer R, Siol O, Abulazm SE, Elkhawass E, Lehmann J, Enzensperger C. Arch. Pharm. 2010; 344: 28
    • 7a Voskressensky LG, Borisova TN, Titov AA, Listratova AV, Kulikova LN, Varlamov AV, Khrustalev VN, Aleksandrov GG. Russ. Chem. Bull. 2012; 61: 1231
    • 7b Voskressensky LG, Borisova TN, Kulikova LN, Varlamov AV, Catto M, Altomare C, Caroti A. Eur. J. Org. Chem. 2004; 2004: 3128
    • 7c Voskressensky LG, Borisova TN, Kulikova LN, Doglova EG, Kleimenov AI, Sorokina EA, Titov AA, Varlamov AV. Chem. Heterocycl. Compd. 2007; 43: 587
    • 7d Zhang L, Chang L, Hu H, Wang H, Yao Z.-J, Wang S. Chem. Eur. J. 2014; 20: 2925
    • 7e Harley-Mason J. Atta-ur-Rahman Chem. Commun. 1967; 208
    • 7f Takano S, Murakata C, Ogasawara K. Heterocycles 1980; 14: 1301
    • 7g Lim H, Seong S, Kim Y, Seo S, Han S. J. Am. Chem. Soc. 2021; 143: 19966
    • 7h Bailey PD, Hollinshead SP. Tetrahedron Lett. 1987; 28: 2879
    • 7i Royer D, Yu YL, Hugel G, Lévy J. Tetrahedron 1998; 54: 6507
    • 8a Movassaghi M, Schmidt MA, Ashenhurst JA. Org. Lett. 2008; 10: 4009
    • 8b Trost BM, Brennan MK. Synthesis 2009; 3003
    • 8c Kaur M, Singh M, Chadha N, Silakari O. Eur. J. Med. Chem. 2016; 123: 858
    • 8d Mahadu YM, Shivani M, Murugesan S, Kondapalli VG, Sekhar C. Biomed. Pharmacother. 2021; 141: 111842
    • 8e Boddy AJ, Bull JA. Org. Chem. Front. 2021; 8: 1026
    • 9a Wenkert E, Bindra JS, Chang C.-J, Cochran DW, Schell FM. Acc. Chem. Res. 1974; 7: 46
    • 9b Kuntiyong P, Inprung N, Phakdeeyothin K, Buaphan A, Thammapichai K. Tetrahedron 2020; 76: 131261
    • 9c Bian Z.-G, Marvin CC, Martin SF. J. Am. Chem. Soc. 2013; 135: 10886
    • 9d Chen P, Yang H, Zhang H, Chen W, Zhang Z, Zhang J, Li H, Wang X, Xie X, She X. Org. Lett. 2020; 22: 2022
    • 9e Edmondson S, Danishefsky SJ, Sepp-Lorenzino L, Rosen N. J. Am. Chem. Soc. 1999; 121: 2147
    • 9f Xu J, Liang L, Zheng H, Chi YR, Tong R. Nat. Commun. 2019; 10: 4754
    • 9g Qian C, Li P, Sun J. Angew. Chem. Int. Ed. 2021; 60: 5871
    • 9h Martin SF, Mortimore M. Tetrahedron Lett. 1990; 31: 4557
    • 9i Mercado-Marin EV, Garcia-Reynaga P, Romminger S, Pimenta EF, Romney DK, Lodewyk MW, Williams DE, Andersen RJ, Miller SJ, Tantillo DJ, Berlinck RG. S, Sarpong R. Nature 2014; 509: 318
    • 9j Finch N, Gemenden CW, Hsu IH.-C, Taylor WI. J. Am. Chem. Soc. 1963; 85: 1520
    • 10a Zhao G, Xie X, Sun H, Yuan Z, Zhong Z, Tang S, She X. Org. Lett. 2016; 18: 2447
    • 10b Stahl R, Borschberg H.-J. Helv. Chim. Acta 1994; 77: 1331
    • 10c Finch N, Gemenden CW, Hsu IH.-C, Kerr A, Sim GA, Taylor WI. J. Am. Chem. Soc. 1965; 87: 2229
    • 10d Phillipson JD, Hemingway SR. Phytochemistry 1975; 8: 1855
    • 10e Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, Grinnell SG, Subrath JJ, Warner E, Kalra S, Hunkele A, Pagirsky J, Eans SO, Medina JM, Xu J, Pan YX, Borics A, Pasternak GW, McLaughlin JP, Majumdar S. J. Med. Chem. 2016; 59: 8381
    • 10f Takayama H, Ishikawa H, Kurihara M, Kitajima M, Aimi N, Ponglux D, Koyama F, Matsumoto K, Moriyama T, Yamamoto LT, Watanabe K, Murayama T, Horie S. J. Med. Chem. 2002; 45: 1949
    • 10g Kamble SH, León F, King TI, Berthold EC, Lopera-Londoño C, Siva Rama Raju K, Hampson AJ, Sharma A, Avery BA, McMahon LR, McCurdy CR. ACS Pharmacol. Transl. Sci. 2020; 3: 1063
    • 10h Keglevich A, Mayer S, Pápai R, Szigetvári Á, Sánta Z, Dékány M, Szántay CJr, Keglevich P, Hazai L. Molecules 2018; 23: 2574
    • 10i Drathen TV, Hoffman F, Brasholz M. Chem. Eur. J. 2018; 24: 10253
    • 10j Su Y, Huang G, Ye F, Qiao P, Ye J, Gao Y, Chen H. Org. Biomol. Chem. 2019; 17: 8811
    • 11a Witkop B, James B, Patrick JB, Rosenblum MJ. J. Am. Chem. Soc. 1951; 73: 2641
    • 11b Witkop B, Goodwin S. J. Am. Chem. Soc. 1953; 75: 3371
    • 11c Janot M.-M, Goutarel R, Le Hir A, Tsatsasa G, Prelog V. Helv. Chim. Acta 1955; 38: 1073
    • 11d Winterfeldt E. Liebigs Ann. Chem. 1971; 745: 23
    • 11e Nakagawa M, Matsuki K, Hasegawa K, Hino T. J. Chem. Soc., Chem. Commun. 1982; 742
    • 11f Carniaux JF, Kan-Fan C, Royer J, Husson HP. Tetrahedron Lett. 1997; 38: 2997
    • 11g Jiang W, Alford VC, Qiu Y, Bhattacharjee S, John TW, Haynes-Johnson D, Kraft PJ, Lundeen SG, Sui Z. Bioorg. Med. Chem. 2004; 12: 1505
    • 11h Pin F, Comesse S, Daïch A. Tetrahedron 2011; 27: 5564
    • 11i Lancefield CS, Zhou L, Lébl T, Slawin AM. Z, Westwood NJ. Org. Lett. 2012; 14: 6166
    • 11j Roxburgh CJ. Tetrahedron 1993; 49: 10749
    • 11k Mental M, Breinbauer R. Curr. Org. Chem. 2007; 11: 159
    • 11l Tratrat C, Giorgi-Renault S, Husson H.-P. Synlett 1998; 1071
    • 11m Sigaut F, Didierdefresse B, Lévy J. Tetrahedron 2000; 56: 9641
    • 11n Afsah EM, Fadda AA, Bondock S, Hammouda MM. Z. Naturforsch. 2009; 64b: 415
    • 11o Mentel M, Peters M, Albering J, Breinbauer R. Tetrahedron 2011; 67: 965
    • 11p Liu S, Scott JS, Kozmin SA. J. Org. Chem. 2013; 78: 8645
    • 11q Yang Y, Bai Y, Sun S, Dai M. Org. Lett. 2014; 16: 6216
    • 11r Wu K, Fang C, Kaur S, Liu P, Wang T. Synthesis 2018; 50: 2897
    • 11s Leas DA, Dong Y, Garrison J, Wang X, Ezell E, Stack DE, Vennerstrom JL. J. Org. Chem. 2020; 85: 2846
    • 12a Lachkar D, Denizot N, Bernadat G, Ahamada K, Beniddir MA, Dumontet V, Gallard J.-F, Guillot R, Leblanc K, N’nang EO, Turpin V, Kouklovsky C, Poupon E, Evanno L, Vincent G. Nat. Chem. 2017; 9: 793
    • 12b Takayama H, Misawa K, Okada N, Ishikawa H, Kitajima M, Hatori Y, Murayama T, Wongseripipatana S, Tashima K, Matsumoto K, Horie S. Org Lett. 2006; 8: 5705
    • 12c Ryckaert B, Hullaert J, Van Hecke K, Winne JM. Org. Lett. 2022; 24: 4119
    • 13a Randriambola L, Quirion J.-C, Kan-Fan C, Husson H.-P. Tetrahedron 1987; 28: 2123
    • 13b Kalaus G, Malkieh N, Kajtár-Peredy M, Brlik J, Szabó L, Szántay C. Heterocycles 1988; 27: 1179
    • 13c Honty K, Szánty C, Kolonits P, Demeter A, Szántay C. Tetrahedron 1993; 49: 10421
    • 13d Nemes A, Szántay CJr, Czibula L, Greiner I. Heterocycles 2007; 11: 2347
    • 13e Woods JR, Riofski MV, Zheng MM, O’Banion MA, Mo H, Kirshner J, Colby DA. Bioorg. Med. Chem. Lett. 2013; 23: 5865
    • 13f Ma Y.-H, Ge S.-W, Wang W, Sun BW. J. Mol. Struct. 2015; 1097: 87
    • 14a Norwood VM, Murillo-Solano C, Goertzen MG, Brummel BR, Perry DL, Rocca JR, Chakrabarti D, Huigens III RH. ACS Omega 2021; 6: 20455
    • 14b Paciaroni NG, Perry DL, Norwood VM, Solano CM, Huigens III RH. ACS Infect. Dis. 2020; 6: 159
    • 15a Gaskell AJ, Joule JA. Tetrahedron 1968; 24: 5115
    • 15b Sakai SI, Ogawa M. Chem. Pharm. Bull. 1978; 26: 678
    • 15c Ross SP, Hoye TR. Nat. Chem. 2017; 9: 523
    • 15d Mukaiyama T, Narasaka K, Hokonok H. J. Am. Chem. Soc. 1969; 91: 4317
    • 16a Beatty JW, Stephenson CR. J. J. Am. Chem. Soc. 2014; 136: 10270
    • 16b Gotoh H, Sears JE, Eschenmoser A, Boger DL. J. Am. Chem. Soc. 2012; 134: 13240
    • 16c Seong S, Lim H, Han S. Chem 2019; 5: 353
    • 17a Chen H, Ye F, Luo J, Gao Y. Org. Lett. 2019; 21: 7475
    • 17b Guo W, Wang X, Zhang J, Zhang T, Lv H, Zhao C. Chem. Biol. Drug Des. 2022; 99: 535
    • 17c Jiang J, Hu C. Molecules 2009; 14: 1852
    • 17d Dong G, Wang S, Miao Z, Yao J, Zhang Y, Guo Z, Zhang W, Sheng C. J. Med. Chem. 2012; 55: 7593
    • 17e Li ZG, Dong GQ, Wang SZ, Miao ZY, Yao JZ, Zhang WN, Sheng CQ. Chin. Chem. Lett. 2015; 26: 267
    • 17f Koltai T. Open Access J. Oncol. Med. 2018; 1: 37
    • 17g Hu X, Li D, Chu C, Li X, Wang X, Jia Y, Hua H, Xu F. Int. J. Mol. Sci. 2018; 19: 3403
    • 17h Zhou P, Li XP, Jiang R, Chen Y, Lv XT, Guo XX, Tian K, Yuan DZ, Lv YW, Ran JH, Li J, Chen DL. Anticancer Drugs 2019; 30: 611
    • 17i Jiang ZB, Huang JM, Xie YJ, Zhang YZ, Chang C, Lai HL, Wang W, Yao XJ, Fan XX, Wu QB, Xie C, Wang MF. J. Exp. Clin. Cancer Res. 2020; 39: 249
    • 17j Chen S, Bi K, Wu S, Li Y, Huang Y, Sheng C, Dong G. Eur. J. Med. Chem. 2021; 220: 113544
    • 17k Liang Y, Zhang H, Zhang X, Peng Y, Deng J, Wang Y, Li R, Liu L, Wang Z. Bioorg. Chem. 2022; 127: 105981

Zoom Image
Zoom Image
Zoom Image
Zoom Image
Figure 1 Select indole alkaloids, their biological activities and clinical applications[1`] [b] [c] [d] [e] [f]
Zoom Image
Figure 2 Indole-promoted C–N ring cleavage reactions employing chloroformates and related electrophiles (Part 1)[2a–2aa]
Zoom Image
Figure 3 Indole-promoted C–N ring cleavage reactions employing chloroformates and related electrophiles (Part 2)[3`] [b] [c] [d] [e] [f] [g] [h] [i] [j] [k] [l] [m] [n] [o]
Zoom Image
Figure 4 Indole-promoted C–N cleavage reactions using the von Braun reaction (Part 1)[2b] [n] , [4`] [b] [c] [d] [e] [f] [g] [h] [i]
Zoom Image
Figure 5 Indole-promoted C–N cleavage reactions using the von Braun reaction (Part 2)[2f] [o] , [5`] [b] [c] [d] [e]
Zoom Image
Figure 6 Indole-promoted Birch ring cleavage reactions[6a–ab]
Zoom Image
Figure 7 (A) Indole-promoted C–N ring cleavage via propiolates and other alkynes. (B) Ring cleavage of quaternary ammonium salts (non-Birch reaction).[2l] [5d] [e] , [6`] [p] , [7`] [b] [c] [d] [e] [f] [g] [h] [i]
Zoom Image
Figure 8 Oxidative rearrangements to 2- or 3-oxindoles[1f] , [8`] [b] [c] [d] [e]
Zoom Image
Figure 9 Reactions of indole alkaloids to yield 2-oxindole derivatives via ring rearrangement[5c] , [9`] [b] [c] [d] [e] [f] [g] [h] [i] [j]
Zoom Image
Figure 10 (A) Ring rearrangements of indole alkaloids to 3-oxindoles. (B) Ring rearrangements of indole alkaloids to spirooxindole-1,3-oxazines.[5d] , [10`] [b] [c] [d] [e] [f] [g] [h] [i] [j]
Zoom Image
Figure 11 Oxidative cleavage and ring rearrangement of indole alkaloids to give quinolones[5e] [9f] [10f] , [11`] [b] [c] [d] [e] [f] [g] [h] [i] [j] [k] [l] [m] [n] [o] [p] [q] [r] [s]
Zoom Image
Figure 12 Reactions that dramatically change yohimbine’s complex structure[5c] [11b] , [12`] [b] [c]
Zoom Image
Figure 13 Reactions that dramatically alter vincamine’s molecular skeleton[5d] [7a] [11i] , [13`] [b] [c] [d] [e] [f]
Zoom Image
Figure 14 Ring distortion efforts of vincamine and yohimbine, and the discovery of biologically active small molecules in significant disease areas (e.g., cancer, opioid addiction, malaria)[5c] [d] [14a] [b]
Zoom Image
Figure 15 Chemical reactions of reserpine that significantly change its architecture[2aa,9j,10b,c,i,12b] , [15`] [b] [c] [d]
Zoom Image
Figure 16 Reactions that alter catharanthine’s complex structure[7g] [10h] , [16`] [b] [c]
Zoom Image
Figure 17 Chemical reactions reported to dramatically change evodiamine’s scaffold[10j] [11h] , [17`] [b] [c] [d] [e] [f] [g] [h] [i] [j] [k]