Klin Monbl Augenheilkd 2024; 241(08): 972-981
DOI: 10.1055/a-2038-8899
Experimentelle Studie

Assessment of Rose Bengal Photodynamic Therapy on Viability and Proliferation of Human Keratolimbal Epithelial and Stromal Cells In Vitro

Untersuchung der photodynamischen Bengalrosa-Therapie auf die Viabilität und Proliferation humaner keratolimbaler Epithel- und Stromazellen in vitro
1   Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
,
Tanja Stachon
1   Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
,
Mahsa Nastaranpour
1   Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
,
Zhen Li
1   Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
,
2   Department of Ophthalmology, Saarland University Hospital and Saarland University, Faculty of Medicine, Homburg/Saar, Germany
,
Myriam Ulrich
1   Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
,
Achim Langenbucher
3   Institute of Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany
,
Nóra Szentmáry
1   Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany
4   Department of Ophthalmology, Semmelweis University, Budapest, Hungary
› Author Affiliations

Abstract

Purpose To investigate the effect of Rose Bengal photodynamic therapy (RB-PDT) on viability and proliferation of human limbal epithelial stem cells (T-LSCs), human corneal epithelial cells (HCE-T), human limbal fibroblasts (LFCs), and human normal and keratoconus fibroblasts (HCFs and KC-HCFs) in vitro.

Methods T-LSCs and HCE-T cell lines were used in this research. LFCs were isolated from healthy donor corneal limbi (n = 5), HCFs from healthy human donor corneas (n = 5), and KC-HCFs from penetrating keratoplasties of keratoconus patients (n = 5). After cell culture, RB-PDT was performed using 0.001% RB concentration and 565 nm wavelength illumination with 0.14 to 0.7 J/cm2 fluence. The XTT and the BrdU assays were used to assess cell viability and proliferation 24 h after RB-PDT.

Results RB or illumination alone did not change cell viability or proliferation in any of the cell types (p ≥ 0.1). However, following RB-PDT, viability decreased significantly from 0.17 J/cm2 fluence in HCFs (p < 0.001) and KC-HCFs (p < 0.0001), and from 0.35 J/cm2 fluence in T-LSCs (p < 0.001), HCE-T (p < 0.05), and LFCs ((p < 0.0001). Cell proliferation decreased significantly from 0.14 J/cm2 fluence in T-LSCs (p < 0.0001), HCE-T (p < 0.05), and KC-HCFs (p < 0.001) and from 0.17 J/cm2 fluence in HCFs (p < 0.05). Regarding LFCs proliferation, no values could be determined by the BrdU assay.

Conclusions Though RB-PDT seems to be a safe and effective treatment method in vivo, its dose-dependent phototoxicity on corneal epithelial and stromal cells has to be respected. The data and experimental parameters applied in this study may provide a reliable reference for future investigations.

Zusammenfassung

Ziel Die photodynamische Therapie kann eine alternative Behandlungsmethode bei antibiotikaresistenten Keratitiden darstellen. In dieser Studie wurde die Wirkung der photodynamischen Therapie mit Bengalrosa (RB-PDT) auf die Viabilität und Proliferation von humanen limbalen Epithelstammzellen (T-LSCs), humanen Hornhautepithelzellen (HCE-T), limbalen Fibroblasten (LFCs), normalen und Keratokonus-Fibroblasten (HCFs und KC-HCFs) in vitro untersucht.

Material und Methoden Für die Experimente an den limbalen Epithelstammzellen wurden 2 verschiedene Zelllinien (T-LSCs und HCE-T) verwendet. Die primären LFCs und HCFs wurden aus den Korneoskleralringen von Hornhautspendern, die KC-HCFs aus perforierenden Keratoplastiken von Keratokonus-Patienten isoliert und kultiviert (jeweils n = 5). Die RB-PDT wurde mit einer 0,001%igen RB-Konzentration bei einer Wellenlänge von 565 nm und einer Energiedosis von 0,14 bis 0,7 J/cm2 durchgeführt. Zur Bestimmung der Viabilität wurde 24 h nach der Bestrahlung der XTT-, zur Bestimmung der Proliferation der BrdU-Assay verwendet.

Ergebnisse Die ausschließliche Verwendung von RB oder Bestrahlung hatten keinen messbaren Einfluss auf die Viabilität oder Proliferation der unterschiedlichen Zelltypen (p ≥ 0,1). Unter Verwendung der RB-PDT mit einer Dosis von 0,17 J/cm2 sank die Viabilität jedoch in den HCFs (p < 0,001) und KC-HCFs (p < 0,0001), und bei einer Dosis von 0,35 J/cm2 in den T-LSCs (p < 0,001), HCE -T (p < 0,05) und LFCs (p < 0,0001). Die Zellproliferation verringerte sich signifikant ab einer Dosis von 0,14 J/cm2 in T-LSCs (p < 0,0001), HCE-T (p < 0,05) und KC- HCFs (p < 0,001) und ab einer Dosis von 0,17 J/cm2 Fluenz in HCFs (p < 0,05). Für die Proliferationsbestimmung der LFCs konnten mit dem BrdU-Assay keine Werte ermittelt werden.

Schlussfolgerung Die RB-PDT zeigt eine dosisabhängige Phototoxizität auf Hornhautepithel- und Stromazellen. Die in dieser Studie ermittelten Daten und experimentellen Parameter bieten eine verlässliche Referenz für zukünftige Untersuchungen für die photodynamische Therapie mit Bengalrosa.

Conclusions

Already known:

  • RB-PDT may be a potential treatment method of infectious keratitis and an effective corneal stiffening procedure.

  • In animal models, corneal RB-PDT was a safe treatment procedure. However, there is no previous report focusing on the cytotoxicity of RB-PDT on human corneal cells in vitro.

  • The effect of RB-PDT on viability and proliferation of corneal epithelial and stromal cells should be evaluated in vitro to provide a practical experimental model for future analysis.

Newly described:

  • The fluence-dependent phototoxicity of RB-PDT on human corneal epithelial and stromal cells should be kept in mind.

  • The data and the experimental parameters applied in this study provide a reliable reference for future investigations.

Supporting Information



Publication History

Received: 19 December 2022

Accepted: 16 February 2023

Accepted Manuscript online:
20 February 2023

Article published online:
19 June 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Bykhovskaya Y, Li X, Epifantseva I. et al. Variation in the lysyl oxidase (LOX) gene is associated with keratoconus in family-based and case-control studies. Invest Ophthalmol Vis Sci 2012; 53: 4152-4157
  • 2 McKay TB, Hjortdal J, Priyadarsini S. et al. Acute hypoxia influences collagen and matrix metalloproteinase expression by human keratoconus cells in vitro . PLoS One 2017; 12: 1-13
  • 3 Bykhovskaya Y, Margines B, Rabinowitz YS. Genetics in Keratoconus: where are we?. Eye Vis (Lond) 2016; 3: 1-10
  • 4 Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003; 135: 620-627
  • 5 Hou Y, Le VNH, Clahsen T. et al. Photodynamic Therapy Leads to Time-Dependent Regression of Pathologic Corneal (Lymph) Angiogenesis and Promotes High-Risk Corneal Allograft Survival. Invest Ophthalmol Vis Sci 2017; 58: 5862-5869
  • 6 Manayath GJ, Narendran V, Ganesh A. et al. Low-fluence photodynamic therapy for early onset choroidal neovascular membrane following laser in situ keratomileusis. Indian J Ophthalmol 2012; 60: 584-585
  • 7 Alarcon EI, Poblete H, Roh HG. et al. Rose Bengal binding to collagen and tissue photobonding. ACS Omega 2017; 2: 6646-6657
  • 8 Cherfan D, Verter EE, Melki S. et al. Collagen cross-linking using rose bengal and green light to increase corneal stiffness. Invest Ophthalmol Vis Sci 2013; 54: 3426-3433
  • 9 Inguscio V, Panzarini E, Dini L. Autophagy Contributes to the Death/Survival Balance in Cancer PhotoDynamic Therapy. Cells 2012; 1: 464-491
  • 10 Dobson J, de Queiroz GF, Golding JP. Photodynamic therapy and diagnosis: Principles and comparative aspects. Vet J 2018; 233: 8-18
  • 11 Kessel D, Reiners JJ. Photodynamic therapy: autophagy and mitophagy, apoptosis and paraptosis. Autophagy 2020; 16: 2098-2101
  • 12 Santhiago MR, Randleman JB. The biology of corneal cross-linking derived from ultraviolet light and riboflavin. Exp Eye Res 2021; 202: 108355
  • 13 Fokam D, Hoskin D. Instrumental role for reactive oxygen species in the inflammatory response. Front Biosci (Landmark Ed) 2020; 25: 1110-1119
  • 14 Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2018; 80: 50-64
  • 15 Korb DR, Herman JP, Finnemore VM. et al. An evaluation of the efficacy of fluorescein, rose bengal, lissamine green, and a new dye mixture for ocular surface staining. Eye Contact Lens 2008; 34: 61-64
  • 16 Martinez JD, Arrieta E, Naranjo A. et al. Rose Bengal Photodynamic Antimicrobial Therapy: A Pilot Safety Study. Cornea 2021; 40: 1036-1043
  • 17 Martinez JD, Naranjo A, Amescua G. et al. Human Corneal Changes After Rose Bengal Photodynamic Antimicrobial Therapy for Treatment of Fungal Keratitis. Cornea 2018; 37: e46
  • 18 Wertheimer CM, Elhardt C, Kaminsky SM. et al. Enhancing Rose Bengal-Photosensitized Protein Crosslinking in the Cornea. Invest Ophthalmol Vis Sci 2019; 60: 1845-1852
  • 19 Germann JA, Martínez-Enríquez E, Martínez-García MC. et al. Corneal collagen ordering after in vivo Rose Bengal and riboflavin cross-linking. Invest Ophthalmol Vis Sci 2020; 61: 28
  • 20 Roux LN, Petit I, Domart R. et al. Modeling of Aniridia-Related Keratopathy by CRISPR/Cas9 Genome Editing of Human Limbal Epithelial Cells and Rescue by Recombinant PAX6 Protein. Stem Cells 2018; 36: 1421-1429
  • 21 Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res 1998; 66: 97-103
  • 22 Brummer G, Littlechild S, McCall S. et al. The role of nonenzymatic glycation and carbonyls in collagen cross-linking for the treatment of keratoconus. Invest Ophthalmol Vis Sci 2011; 52: 6363-6369
  • 23 Redmond RW, Kochevar IE. Medical Applications of Rose Bengal- and Riboflavin-Photosensitized Protein Crosslinking. Photochem Photobiol 2019; 95: 1097-1115
  • 24 Ni T, Senthil-Kumar P, Dubbin K. et al. A photoactivated nanofiber graft material for augmented Achilles tendon repair. Lasers Surg Med 2012; 44: 645-652
  • 25 Chan BP, Kochevar IE, Redmond RW. Enhancement of porcine skin graft adherence using a light-activated process. J Surg Res 2002; 108: 77-84
  • 26 Fairbairn NG, Ng-Glazier J, Meppelink AM. et al. Light-Activated Sealing of Nerve Graft Coaptation Sites Improves Outcome following Large Gap Peripheral Nerve Injury. Plast Reconstr Surg 2015; 136: 739-750
  • 27 Bekesi N, Kochevar IE, Marcos S. Corneal biomechanical response following collagen cross-linking with Rose Bengal-green light and riboflavin-UVA. Invest Ophthalmol Vis Sci 2016; 57: 992-1001
  • 28 Lorenzo-Martín E, Gallego-Muñoz P, Ibares-Frías L. et al. Rose Bengal and Green Light Versus Riboflavin–UVA Cross-Linking: Corneal Wound Repair Response. Invest Ophthalmol Vis Sci 2018; 59: 4821-4830
  • 29 Gallego-Muñoz P, Ibares-Frías L, Lorenzo E. et al. Corneal Wound Repair After Rose Bengal and Green Light Crosslinking: Clinical and Histologic Study. Invest Ophthalmol Vis Sci 2017; 58: 3471-3480
  • 30 Verter EE, Gisel TE, Yang P. et al. Light-initiated bonding of amniotic membrane to cornea. Invest Ophthalmol Vis Sci 2011; 52: 9470-9477
  • 31 Redmond RW, Kochevar IE. Medical Applications of Rose Bengal- and Riboflavin-Photosensitized Protein Crosslinking. Photochem Photobiol 2019; 95: 1097-1115
  • 32 Zhu H, Alt C, Webb RH. et al. Corneal Crosslinking With Rose Bengal and Green Light: Efficacy and Safety Evaluation. Cornea 2016; 35: 1234-1241
  • 33 Wollensak G, Spoerl E, Wilsch M. et al. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea 2004; 23: 43-49
  • 34 Spoerl E, Mrochen M, Sliney D. et al. Safety of UVA-riboflavin cross-linking of the cornea. Cornea 2007; 26: 385-389
  • 35 Krüger A, Hovakimyan M, Ramírez Ojeda DF. et al. Combined nonlinear and femtosecond confocal laser-scanning microscopy of rabbit corneas after photochemical cross-linking. Invest Ophthalmol Vis Sci 2011; 52: 4247-4255
  • 36 Naranjo A, Pelaez D, Arrieta E. et al. Cellular and molecular assessment of rose bengal photodynamic antimicrobial therapy on keratocytes, corneal endothelium and limbal stem cell niche. Exp Eye Res 2019; 188: 107808
  • 37 Vanden Berghe T, Vanlangenakker N, Parthoens E. et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 2010; 17: 922-930
  • 38 Levine H, Sepulveda-Beltran PA, Amescua G. Rose Bengal Photodynamic Antimicrobial Therapy as potential adjuvant treatment for Serratia marcescens corneal ulcer. Am J Ophthalmol 2021; 231: e1-e2
  • 39 Song X, Stachon T, Wang J. et al. Viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus keratocytes after cross-linking. Biomed Res Int 2015; 2015: 254237
  • 40 Stachon T, Latta L, Seitz B. et al. Hypoxic stress increases NF-κB and iNOS mRNA expression in normal, but not in keratoconus corneal fibroblasts. Graefes Arch Clin Exp Ophthalmol 2021; 259: 449-458
  • 41 Wink DA, Mitchell JB. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 1998; 25: 434-456
  • 42 Ridnour LA, Thomas DD, Donzelli S. et al. The biphasic nature of nitric oxide responses in tumor biology. Antioxid Redox Signal 2006; 8: 1329-1337
  • 43 Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol 2015; 6: 311-317
  • 44 Bazak J, Korytowski W, Girotti AW. Bystander Effects of Nitric Oxide in Cellular Models of Anti-Tumor Photodynamic Therapy. Cancers (Basel) 2019; 11: 1674
  • 45 Ainscough SL, Linn ML, Barnard Z. et al. Effects of fibroblast origin and phenotype on the proliferative potential of limbal epithelial progenitor cells. Exp Eye Res 2011; 92: 10-19
  • 46 Teranishi S, Kimura K, Kawamoto K. et al. Protection of human corneal epithelial cells from hypoxia-induced disruption of barrier function by keratinocyte growth factor. Invest Ophthalmol Vis Sci 2008; 49: 2432-2437
  • 47 Cai Y, Wang W, Qiu Y. et al. KGF inhibits hypoxia-induced intestinal epithelial cell apoptosis by upregulating AKT/ERK pathway-dependent E-cadherin expression. Biomed Pharmacother 2018; 105: 1318-1324
  • 48 Crane AM, Bhattacharya SK. The use of bromodeoxyuridine incorporation assays to assess corneal stem cell proliferation. Methods Mol Biol 2013; 1014: 65-70
  • 49 Chen SL, Cai SR, Zhang XH. et al. Targeting CRMP-4 by lentivirus-mediated RNA interference inhibits SW480 cell proliferation and colorectal cancer growth. Exp Ther Med 2016; 12: 2003-2008
  • 50 Masoud Y, Ramin S, Mahboobeh R. et al. Effect of Lithium and Valproate on Proliferation and Migration of Limbal Epithelial Stem/Progenitor Cells. Curr Eye Res 2019; 44: 154-161
  • 51 Sun X, Kaufman PD. Ki-67: more than a proliferation marker. Chromosoma 2018; 127: 175-186
  • 52 Nakatsu MN, Ding Z, Ng MY. et al. Wnt/β-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci 2011; 52: 4734-4741
  • 53 Araki-Sasaki K, Ohashi Y, Sasabe T. et al. An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 1995; 36: 614-621
  • 54 Rubelowski AK, Latta L, Katiyar P. et al. HCE-T cell line lacks cornea-specific differentiation markers compared to primary limbal epithelial cells and differentiated corneal epithelium. Graefes Arch Clin Exp Ophthalmol 2020; 258: 565-575
  • 55 Bath C, Yang S, Muttuvelu D. et al. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation. Stem Cell Res 2013; 10: 349-360
  • 56 Wang L, González S, Dai W. et al. Effect of hypoxia-regulated polo-like kinase 3 (Plk3) on human limbal stem cell differentiation. J Biol Chem 2016; 291: 16519-16529
  • 57 Wertheimer CM, Mendes B, Pei Q. et al. Arginine as an Enhancer In Rose Bengal Photosensitized Corneal Crosslinking. Transl Vis Sci Technol 2020; 9: 1-11