Synlett 2023; 34(18): 2085-2096
DOI: 10.1055/a-2036-1151
account
Modern Boron Chemistry: 60 Years of the Matteson Reaction

Recent Advances in the Preparation and Asymmetric Transformation of α-Haloboron Compounds

Dong Wang
,
Tao XU
This work was supported by the National Natural Science Foundation of China (Grant No. 22071183), the Science and Technology Commission of Shanghai Municipality (19DZ2271500), and the Open Research Fund of Key Laboratory of the Ministry of Education for Advanced Catalysis Materials and Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces.


Abstract

α-Haloboron compounds are very versatile synthons in organic synthesis. They can be transformed into several kinds of skeletons via Matteson homologation reaction, cross-coupling or other strategies based on the carbon–halo or carbon–boron bond. In recent years, many important advances have been achieved in the upstream and downstream chemistry of these compounds. This review comprehensively summarizes their current synthetic methods and asymmetric couplings with nickel catalysts.

1 Introduction

2 The Preparation of α-Haloboron Compounds

3 The Asymmetric Transformation of α-Haloboron Compounds

4 Conclusion



Publication History

Received: 08 February 2023

Accepted after revision: 15 February 2023

Accepted Manuscript online:
15 February 2023

Article published online:
15 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Matteson DS, Mah RW. H. J. Am. Chem. Soc. 1963; 85: 2599
    • 2a Matteson DS, Majumdar D. J. Am. Chem. Soc. 1980; 102: 7588
    • 2b Matteson DS, Ray R. J. Am. Chem. Soc. 1980; 102: 7590
    • 3a Matteson DS, Schaumberg GD. J. Org. Chem. 1966; 31: 726
    • 3b Pasto DJ, Chow J, Arora SK. Tetrahedron 1969; 25: 1557
    • 3c Rathke MW, Chao E, Wu G. J. Organomet. Chem. 1976; 122: 145
    • 3d Brown HC, De Lue NR, Yamamoto Y, Maruyama K, Kasahara T, Murahashi S. J. Org. Chem. 1977; 42: 4088
  • 4 Matteson DS, Majumdar D. Organometallics 1983; 2: 1529
    • 5a Schmidt J, Choi J, Liu AT, Slusarczyk M, Fu GC. Science 2016; 354: 1265
    • 5b Sun S.-Z, Martin R. Angew. Chem. Int. Ed. 2018; 57: 3622
    • 5c Sun S.-Z, Talavera L, Spieß P, Day CS, Martin R. Angew. Chem. Int. Ed. 2021; 60: 11740
    • 5d Wang J.-W, Li Y, Nie W, Chang Z, Yu Z, Zhao Y, Lu X, Fu Y. Nat. Commun. 2021; 12: 1313
  • 6 Hafner A, Mancino V, Meisenbach M, Schenkel B, Sedelmeier J. Org. Lett. 2017; 19: 786
  • 7 Zheng B, Srebnik M. Tetrahedron Lett. 1993; 34: 4133
  • 8 Elgendy S, Patel G, Kakkar VV, Claeson G, Green D, Skordalakes E, Baban JA, Deadman J. Tetrahedron Lett. 1994; 35: 2435
  • 9 Elgendy S, Claeson G, Kakkar VV, Green D, Patel G, Goodwin CA, Baban JA, Scully MF, Deadman J. Tetrahedron 1994; 50: 3803
    • 10a Li L, Zhao S, Joshi-Pangu A, Diane M, Biscoe MR. J. Am. Chem. Soc. 2014; 136: 14027
    • 10b Eisold M, Didier D. Org. Lett. 2017; 19: 4046
    • 10c Qiao J.-B, Zhao Z.-Z, Zhang Y.-Q, Yin K, Tian Z.-X, Shu X.-Z. Org. Lett. 2020; 22: 5085
    • 11a Smilović IG, Casas-Arcé E, Roseblade SJ, Nettekoven U, Zanotti-Gerosa A, Kovačevič M, Časar Z. Angew. Chem. Int. Ed. 2012; 51: 1014
    • 11b Roseblade SJ, Casas-Aré E, Nettekoven U, Smilović IG, Zanotti-Gerosa A, Časar Z. Synthesis 2013; 45: 2824
  • 12 Roseblade SJ, Smilović IG, Časar Z. Tetrahedron 2014; 70: 2654
  • 13 Lv W.-X, Zeng Y.-F, Li Q, Chen Y, Tan D.-H, Yang L, Wang H. Angew. Chem. Int. Ed. 2016; 55: 10069
  • 14 Ivon YM, Kuchkovska O, Voitenko V, Grygorenko OO. Eur. J. Org. Chem. 2020; 3367
  • 15 Zeng Y.-F, Liu X.-G, Tan D.-H, Fan W.-X, Li Y.-N, Guo Y, Wang H. Chem. Commun. 2020; 56: 4332
  • 16 Fan W.-X, Li J.-L, Lv W.-X, Yang L, Li Q, Wang H. Chem. Commun. 2020; 56: 82
  • 17 Wang L, Lin S, Zhu Y, Ferrante D, Ishak T, Baba Y, Sharma A. Chem. Commun. 2021; 57: 4564
  • 18 Ueda M, Kato Y, Taniguchi N, Morisaki T. Org. Lett. 2020; 22: 6234
  • 19 Fang T, Qiu J, Yang K, Song Q. Org. Chem. Front. 2021; 8: 1991
  • 20 Zhang C, Hu W, Lovinger GJ, Jin J, Chen J, Morken JP. J. Am. Chem. Soc. 2021; 143: 14189
  • 21 Sharma HA, Essman JZ, Jacobsen EN. Science 2021; 374: 752
  • 22 Li B, Bunescu A, Gaunt MJ. Chem 2023; 9: 216
  • 23 Wang D, Zhou J, Hu Z, XU T. J. Am. Chem. Soc. 2022; 144: 22870
    • 24a Matteson DS, Fernando DJ. Organomet. Chem. 2003; 680: 100
    • 24b Neu RC, Jiang C, Stephan DW. Dalton Trans. 2013; 726
    • 24c Denis JD. St, Zajdlik A, Tan J, Trinchera P, Lee CF, He Z, Adachi S, Yudin AK. J. Am. Chem. Soc. 2014; 136: 17669
    • 25a Hoffmann RW, Landmann B. Chem. Ber. 1986; 119: 1039
    • 25b Sun S.-Z, Börjesson M, Martin-Montero R, Martin R. J. Am. Chem. Soc. 2018; 140: 12765
    • 25c Qiu J, Wang C, Zhou L, Lou Y, Yang K, Song Q. Org. Lett. 2022; 24: 2446
    • 25d Lou Y, Qiu J, Yang K, Zhang F, Wang C, Song Q. Org. Lett. 2021; 23: 4564
  • 26 Zheng P, Zhou P, Wang D, Xu W, Wang H, XU T. Nat. Commun. 2021; 12: 1646
  • 27 Wang D, XU T. ACS Catal. 2021; 11: 12469
  • 28 Zhou J, Wang D, Xu W, Hu Z, XU T. J. Am. Chem. Soc. 2023; 145: 2081
  • 29 Zuccarello G, Batiste SM, Cho H, Fu GC. J. Am. Chem. Soc. 2023; 145: 3330