Synthesis 2024; 56(01): 55-70
DOI: 10.1055/a-2013-9885
special topic
Advances in Skeletal Editing and Rearrangement Reactions

Recent Advances in the Dearomative Skeletal Editing of Mono-azaarenes

Pengke Zhang
b   Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China
,
Lin Hua
b   Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China
,
Tamotsu Takahashi
b   Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou 450002, P. R. of China
,
Shengnan Jin
a   College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. of China
,
Qilin Wang
a   College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (22101073 and U1504206), the Key Teacher Project of Henan Province of China (2021GGJS025), China Postdoctoral Science Foundation (2020M672200), and Henan University (SYL20060149).


Abstract

Despite its challenges, the skeletal editing of mono-azaarenes (pyridines, quinolines, and isoquinolines) has shown unparalleled synthetic utility in the construction of complex molecules that are difficult to access by conventional methods. In this short review, we summarize the three most recently developed skeletal editing strategies for the deconstruction of azaarene cores, with a focus on their generality, limitations, and mechanistic aspects. Also, the application of the skeletal editing strategy in the total synthesis of some important natural products is discussed.

1 Introduction

2 Skeletal Editing of Mono-Azaarenes through Zincke-like Reactions

3 Skeletal Editing of Mono-azaarenes through Aza-Buchner Reactions

4 Skeletal Editing of Mono-azaarenes via Photoinduced Radical or Energy-Transfer Processes

5 Conclusion



Publication History

Received: 19 December 2022

Accepted after revision: 16 January 2023

Accepted Manuscript online:
17 January 2023

Article published online:
16 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
    • 1b Wang Y.-C, Cobo AA, Franz AK. Org. Chem. Front. 2021; 8: 4315
    • 2a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 2b Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. J. Med. Chem. 2021; 64: 2339
    • 4a Zincke T. Justus Liebigs Ann. Chem. 1903; 330: 361
    • 4b Zincke T, Würker W. Justus Liebigs Ann. Chem. 1904; 338: 107
    • 4c Zincke T, Heuser G, Möller W. Justus Liebigs Ann. Chem. 1904; 333: 296
    • 3a Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
    • 3b Sowmiah S, Esperança JM. S. S, Rebelo LP. N, Afonso CA. M. Org. Chem. Front. 2018; 5: 453
    • 3c Bertuzzi G, Bernardi L, Fochi M. Catalyst 2018; 8: 632
    • 3d Zhang Z.-Y, Han H.-B, Wang L.-L, Bu Z.-W, Xie Y, Wang Q.-L. Org. Biomol. Chem. 2021; 19: 3960
    • 3e Kratena N, Marinic B, Donohoe TJ. Chem. Sci. 2022; 13: 14213
    • 3f Sheng F.-T, Wang J.-Y, Tan W, Zhang Y.-C, Shi F. Org. Chem. Front. 2020; 7: 3967
    • 3g Zhu M, Zhang X, Zheng C, You S.-L. Acc. Chem. Res. 2022; 55: 2510
  • 5 König W. J. Prakt. Chem. 1904; 69: 105
    • 6a Eda M, Kurth MJ, Nantz MH. J. Org. Chem. 2000; 65: 5131
    • 6b Pastre JC, Correia CR. D, Génisson Y. Green Chem. 2008; 10: 885
    • 6c Colquhoun HM, Greenland BW, Zhu Z.-X, Shaw JS, Cardin CJ, Burattini S, Elliott JM, Basu S, Gasa TB, Stoddart JF. Org. Lett. 2009; 11: 5238
    • 6d Zeghbib N, Thelliere P, Rivard M, Martens T. J. Org. Chem. 2016; 81: 3256
    • 6e Das G, Skorjanc T, Sharma SK, Gándara F, Lusi M, Rao DS. S, Vimala S, Prasad SK, Raya J, Han DS, Jagannathan R, Olsen J.-C, Trabolsi A. J. Am. Chem. Soc. 2017; 139: 9558
    • 7a Domarco O, Neira I, Rama T, Blanco-Gómez A, García MD, Peinador C, Quintela JM. Org. Biomol. Chem. 2017; 15: 3594
    • 7b Zhang H.-Y, Cheng L, Nian H, Du J, Chen T, Cao L.-P. Chem. Commun. 2021; 57: 3135
  • 8 Chen G.-J, Huang X.-H, Zhang Y.-D, Sun M.-Y, Shen J, Huang R, Tong M.-M, Long Z.-Y, Wang X.-C. Chem. Commun. 2018; 54: 12174
    • 9a Trofimov BA, Andriyankova LV, Belyaeva KV, Nikitina LP, Afonin AV, Mal’kina AG. Eur. J. Org. Chem. 2015; 7876
    • 9b Andriyankova LV, Nikitina LP, Belyaeva KV, Mal’kina AG, Afonin AV, Muzalevskii VM, Nenaidenko VG, Trofimov BA. Russ. J. Org. Chem. 2016; 52: 1857
    • 9c Trofimov BA, Belyaeva KV, Nikitina LP, Mal’kina AG, Afonin AV, Ushakov IA, Vashchenko AV. Chem. Commun. 2018; 54: 5863
    • 9d Belyaeva KV, Nikitina LP, Afonin AV, Trofimov BA. Russ. J. Org. Chem. 2018; 54: 1845
  • 10 Xu K, Li W.-J, Sun R, Luo L.-H, Chen X, Zhang C.-C, Zheng X.-L, Yuan M.-L, Fu H.-Y, Li R.-X, Chen H. Org. Lett. 2020; 22: 6107
  • 11 Ravindran J, Yadhukrishnan VO, Asha RS, Lankalapalli RS. Org. Biomol. Chem. 2020; 18: 3927
  • 12 Xu C, Yin G.-D, Jia F.-C, Wu Y.-D, Wu A.-X. Org. Lett. 2021; 23: 2559
  • 13 Morofuji T, Kinoshita H, Kano N. Chem. Commun. 2019; 55: 8575
  • 14 Štacková L, Štacko P, Klán P. J. Am. Chem. Soc. 2019; 141: 7155
  • 15 Tan Z.-D, Ci C.-G, Yang J, Wu Y, Cao L, Jiang H.-F, Zhang M. ACS Catal. 2020; 10: 5243
  • 16 Mao W.-H, Zhao H, Zhang M. Chem. Commun. 2022; 58: 4380
  • 17 Morofuji T, Inagawa K, Kano N. Org. Lett. 2021; 23: 6126
    • 18a Kearney AM, Vanderwal CD. Angew. Chem. Int. Ed. 2006; 45: 7803
    • 18b Michels TD, Kier MJ, Kearney AM, Vanderwal CD. Org. Lett. 2010; 12: 3093
  • 19 Yan L.-H, Skiredj A, Dory Y, Delpech B, Poupon E. Eur. J. Org. Chem. 2014; 4973
  • 20 Michels TD, Rhee JU, Vanderwal CD. Org. Lett. 2008; 10: 4787
    • 21a Martin DB. C, Vanderwal CD. J. Am. Chem. Soc. 2009; 131: 3472
    • 21b Martin DB. C, Vanderwal CD. Chem. Sci. 2011; 2: 649
    • 21c Hong AY, Vanderwal CD. J. Am. Chem. Soc. 2015; 137: 7306
    • 22a Wang H.-Q, Xu M.-M, Wan Y, Mao Y.-J, Mei G.-J, Shi F. Adv. Synth. Catal. 2018; 360: 1850
    • 22b Saya JM, Roose TR, Peek JJ, Weijers B, de Waal TJ. S, Velde CM. L. V, Orru RV. A. O, Ruijter E. Angew. Chem. Int. Ed. 2018; 57: 15232
    • 22c Liang X.-W, Liu C, Zhang W, You S.-L. Chem. Commun. 2017; 53: 5531
    • 23a Steinhardt SE, Silverston JS, Vanderwal CD. J. Am. Chem. Soc. 2008; 130: 7560
    • 23b Steinhardt SE, Vanderwal CD. J. Am. Chem. Soc. 2009; 131: 7546
    • 23c Paton RS, Steinhardt SE, Vanderwal CD, Houk KN. J. Am. Chem. Soc. 2011; 133: 3895
    • 24a Miao H.-J, Wang L.-L, Han H.-B, Zhao Y.-D, Wang Q.-L, Bu Z.-W. Chem. Sci. 2020; 11: 1418
    • 24b Wang L.-L, Han H.-B, Cui Z.-H, Zhao J.-W, Bu Z.-W, Wang Q.-L. Org. Lett. 2020; 22: 873
    • 24c Bai X.-G, Miao H.-J, Zhao Y, Wang Q.-L, Bu Z.-W. Org. Lett. 2020; 22: 5068
    • 24d Miao H.-J, Bai X.-G, Wang L.-L, Yu J.-H, Bu Z.-W, Wang Q.-L. Org. Chem. Front. 2021; 8: 204
    • 24e Jin S.-J, Wang L.-L, Han H.-B, Liu X.-L, Bu Z.-W, Wang Q.-L. Chem. Commun. 2021; 57: 359
    • 24f Cui Z.-H, Zhang K, Gu L.-J, Bu Z.-W, Zhao J.-W, Wang Q.-L. Chem. Commun. 2021; 57: 9402
    • 24g Gu L.-J, Han H.-B, Bu Z.-W, Wang Q.-L. Org. Lett. 2022; 24: 2008
    • 24h Han H.-B, Li C.-Y, Niu X.-Y, Wang Y.-X, Zhang W.-J, Wang Q.-L. Chem. Commun. 2022; 58: 4775
    • 24i Han H.-B, Wang L.-L, Niu X.-Y, Li C.-Y, Xu Y.-Q, Wang Q.-L. Chem. Commun. 2022; 58: 7964
  • 25 Wang L.-L, Han H.-B, Gu L.-J, Zhang W.-J, Zhao J.-W, Wang Q.-L. Chem. Sci. 2021; 12: 15389
    • 26a Yadav JS, Reddy BV. S, Gupta MK, Prabhakar A, Jagadeesh B. Chem. Commun. 2004; 2124
    • 26b Mailloux MJ, Fleming GS, Kumta SS, Beeler AB. Org. Lett. 2021; 23: 525
  • 27 Peng X.-J, He H.-P, Liu Q, She K, Zhang B.-Q, Wang H.-S, Tang H.-T, Pan Y.-M. Sci. China Chem. 2021; 64: 753
    • 28a Tu M.-S, Chen K.-W, Wu P, Zhang Y.-C, Liu X.-Q, Shi F. Org. Chem. Front. 2021; 8: 2643
    • 28b Zhang H.-H, Shi F. Acc. Chem. Res. 2022; 55: 2562
    • 28c Yang B.-M, Ng X.-Q, Zhao Y. Chem. Catal. 2022; 2: 3048
  • 29 Woo J, Christian AH, Burgess SA, Jiang Y, Mansoor UF, Levin MD. Science 2022; 376: 527
  • 30 Ma J.-J, Chen S.-M, Bellotti P, Wagener T, Daniliuc C, Houk KN, Glorius F. Nat. Catal. 2022; 5: 405