Synthesis 2023; 55(08): 1274-1284
DOI: 10.1055/a-1992-7148
paper

Asymmetric Synthesis of Benzothiophene-Containing Lipoxin A4 Analogues with Lower-Chain Modifications

Catherine Tighe
,
Benjamin Owen
,
Patrick J. Guiry
Science Foundation Ireland 11/PI/1206 (CK and PG). B.O. is grateful for the award of an Irish Research Council Enterprise Partnership Scheme Ph.D. Scholarship (EPSPG/2019/529) with Enterprise Partner SK Biotek Ireland.


Abstract

Lipoxins are an important class of pro-resolving mediators that play a crucial role in the resolution of inflammation. Thus, the synthesis of more metabolically stable synthetic lipoxin analogues is an area of significant interest. Herein the asymmetric synthesis of lipoxin A4 (LXA4) mimetics is reported in which the triene core of the molecule has been replaced by an aromatic sulfur-containing benzothiophene ring. The key steps in the synthesis included a Friedel–Crafts acylation, a Suzuki coupling between two upper and lower chain fragments, and a highly stereoselective Noyori transfer hydrogenation to set the stereochemistry of the alcohol at the benzylic position. A small library of benzothiophene-containing LXA4 analogues with further structural modifications was also successfully synthesised. These included analogues with phenoxy, p-fluorophenoxy, and p-trifluoromethylphenoxy substituents incorporated into the lower alkyl chain with the objective of providing enhanced metabolic stability by blocking ω-oxidation pathways.

Supporting Information



Publication History

Received: 28 October 2022

Accepted after revision: 05 December 2022

Accepted Manuscript online:
05 December 2022

Article published online:
04 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lawrence T, Gilroy DW. Int. J. Exp. Pathol. 2007; 88: 85
  • 2 Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, Millar JA, Marino S, Cilfone NA, Mattila JT, Linderman JJ, Kirschner DE. Immunol. Rev. 2018; 285: 147
  • 3 Corminboeuf O, Leroy X. J. Med. Chem. 2015; 58: 537
  • 4 Maderna P, Cottell DC, Toivonen T, Dufton N, Dalli J, Perretti M, Godson C. FASEB J. 2010; 24: 4240
  • 5 Maddox JF, Serhan CN. J. Exp. Med. 1996; 183: 137
  • 6 Romano M, Cianci E, Simiele F, Recchiuti A. Eur. J. Pharmacol. 2015; 760: 49
  • 7 Duffy CD, Guiry PJ. MedChemComm 2010; 1: 249
  • 8 O’Sullivan TP, Vallin KS. A, Ali Shah ST, Fakhry J, Maderna P, Scannell M, Sampaio AL. F, Perretti M, Godson C, Guiry PJ. J. Med. Chem. 2007; 50: 5894
  • 9 Duffy CD, Maderna P, McCarthy C, Loscher CE, Godson C, Guiry PJ. ChemMedChem 2010; 5: 517
  • 10 de Gaetano M, Butler E, Gahan K, Zanetti A, Marai M, Chen J, Cacace A, Hams E, Maingot C, McLoughlin A, Brennan E, Leroy X, Loscher CE, Fallon P, Perretti M, Godson C, Guiry PJ. Eur. J. Med. Chem. 2019; 162: 80
  • 11 de Gaetano M, Tighe C, Gahan K, Zanetti A, Chen J, Newson J, Cacace A, Marai M, Gaffney A, Brennan E, Kantharidis P, Cooper ME, Leroy X, Perretti M, Gilroy D, Godson C, Guiry PJ. J. Med. Chem. 2021; 64: 9193
  • 12 Owen B, de Gaetano M, Gaffney A, Godson C, Guiry PJ. Org. Lett. 2022; 24: 6049
  • 13 Keri RS, Chand K, Budagumpi S, Balappa Somappa S, Patil SA, Nagaraja BM. Eur. J. Med. Chem. 2017; 138: 1002
  • 14 Subbaiah MA. M, Meanwell NA. J. Med. Chem. 2021; 64: 14046
  • 15 Siebert CD. Chem. Unserer Zeit 2004; 38: 320
  • 16 Noyori R, Yamakawa M, Hashiguchi S. J. Org. Chem. 2001; 66: 7931
  • 17 Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN. J. Biol. Chem. 1997; 272: 6972
  • 18 Leonard MO. J. Am. Soc. Nephrol. 2002; 13: 1657
  • 19 Guimond N, MacDonald MJ, Lemieux V, Beauchemin AM. J. Am. Chem. Soc. 2012; 134: 16571
  • 20 Phillips ED, Chang H.-F, Holmquist CR, McCauley JP. Bioorg. Med. Chem. Lett. 2003; 13: 3223