Synthesis 2023; 55(07): 1130-1138
DOI: 10.1055/a-1970-8229
paper

Practical One-Pot Synthesis of 4,6-Bis(hetero)aryl- and 4-(Hetero) aryl-6-methyl-substituted 1,3,5-Triazin-2-amines

Laís C. Calheiros
a   Grupo de Pesquisa em Síntese e Caracterização Molecular do Mato Grosso do Sul, Universidade Federal da Grande Dourados, 79825-070 Dourados (MS), Brazil
b   Laboratorio de Síntese de Substâncias Bioativas, CINPROBIO-CLF, Universidade Federal da Grande Dourados, 79825-070 Dourados (MS), Brazil
,
Sidnei Moura
c   Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Universidade de Caxias do Sul, 95070-560 Caxias do Sul (RS), Brazil
,
Davi F. Back
d   Laboratório de Materiais Inorgânicos, Universidade Federal de Santa Maria, 97105-900 Santa Maria (RS), Brazil
,
Guilherme C. Paveglio
a   Grupo de Pesquisa em Síntese e Caracterização Molecular do Mato Grosso do Sul, Universidade Federal da Grande Dourados, 79825-070 Dourados (MS), Brazil
b   Laboratorio de Síntese de Substâncias Bioativas, CINPROBIO-CLF, Universidade Federal da Grande Dourados, 79825-070 Dourados (MS), Brazil
,
Gleison A. Casagrande
e   Grupo de Pesquisa em Síntese e Caracterização Molecular do Mato Grosso do Sul, Universidade Federal de Mato Grosso do Sul, 79074-460 Campo Grande (MS), Brazil
,
Lucas Pizzuti
a   Grupo de Pesquisa em Síntese e Caracterização Molecular do Mato Grosso do Sul, Universidade Federal da Grande Dourados, 79825-070 Dourados (MS), Brazil
b   Laboratorio de Síntese de Substâncias Bioativas, CINPROBIO-CLF, Universidade Federal da Grande Dourados, 79825-070 Dourados (MS), Brazil
› Author Affiliations
This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant number 435178/2018-0), Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (Fundect, grant number 71/027.195/2022), and Financiadora de Estudos e Projetos (MCTI/Finep/CT-Infra – 01/2013, grant number 04.13.0448.00; MCTI/Finep/CT-Infra-Proinfra – 02/2014, grant number 04.18.0011.00).


Abstract

Two series of 4,6-disubstituted 1,3,5-triazin-2-amines were prepared by cesium carbonate-promoted cotrimerization of aromatic nitriles with guanidine and the reaction of (hetero)aryl nitriles with N-acetylguanidine. The first series of 4,6-bis(hetero)aryl-1,3,5-triazin-2-amines was synthesized in yields of 56–85% by adapting a traditional approach that starts from readily available substrates but requires strong and hard-to-handle bases as well as presents serious scope limitations. In this line, the method developed here used a mild base and overcame the scope limitation for p-substituted benzonitrile with electron-releasing group. The second series of 4-(hetero)aryl-6-methyl-1,3,5-triazin-2-amines comprises unsymmetrically substituted symmetrical triazines, which were synthesized in yields of 58–75%. In summary, this work highlighted a synthetic method, which tolerates broad range of substrates, including o- and p-substituted benzonitriles as well as heteroaromatic nitriles.

Supporting Information



Publication History

Received: 21 September 2022

Accepted after revision: 02 November 2022

Accepted Manuscript online:
02 November 2022

Article published online:
06 December 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Liu H, Long S, Rakesh KP, Zha GF. Eur. J. Med. Chem. 2020; 185: 111804
  • 2 Barrett MP, Boykin DW, Brun R, Tidwell RR. Brit. J. Pharmacol. 2007; 152: 1155
  • 3 LeBaron HM, McFarland JE, Burnside OC. In The Triazine Herbicides: 50 Years Revolutionizing Agriculture, 1st ed. LeBaron HM, McFarland JE, Burnside OC. Elsevier; San Diego: 2008: 1
    • 4a Carrington HC, Crowther AF, Stacey GJ. J. Chem. Soc. 1954; 1017
    • 4b Sherman WR. J. Org. Chem. 1961; 26: 88
    • 4c Nishigaki S, Yoneda F, Matsumoto H, Morinaga K. J. Med. Chem. 1969; 12: 39
    • 4d Maliszewski D, Drozdowska D. Pharmaceuticals 2022; 15: 221
    • 5a Suda A, Kawasaki KI, Komiyama S, Isshiki Y, Yoon DO, Kim SJ, Na YJ, Hasegawa K, Fukami TA, Sato S, Miura T, Ono N, Yamazaki T, Saitoh R, Shimma N, Shiratori Y, Tsukuda T. Bioorg. Med. Chem. 2014; 22: 892
    • 5b Kothayer H, Spencer SM, Triphathi K, Westwell AD, Palle K. Bioorg. Med. Chem. Lett. 2016; 26: 2030
    • 5c Cascioferro S, Parrino B, Spanò V, Carbone A, Montalbano A, Barraja P, Diana P, Cirrincione G. Eur. J. Med. Chem. 2017; 142: 523
    • 6a Chen X, Zhan P, Liu X, Cheng Z, Meng C, Shao S, Pannecouque C, De Clercq E, Liu X. Bioorg. Med. Chem. 2012; 20: 3856
    • 6b Xiong YZ, Chen FE, Balzarini J, De Clercq E, Pannecouque C. Eur. J. Med. Chem. 2008; 43: 1230
    • 7a Liu H, Long S, Rakesh KP, Zha GF. Eur. J. Med. Chem. 2020; 185: 111804
    • 7b Bhat HR, Gupta SK, Singh UP. RSC Adv. 2012; 2: 12690
    • 7c Srinivas K, Srinivas U, Bhanuprakash K, Harakishore K, Murthy US. N, Rao VJ. Eur. J. Med. Chem. 2006; 41: 1240
    • 8a Mosquera MV, Carvajal AF, Moure A, Valente P, Cases RP, Ros JM. G, Bujons J, Montiel AF, Messeguer A. J. Med. Chem. 2011; 54: 7441
    • 8b Elshemy HA. H, Abdelall EK. A, Azouz AA, Moawad A, Ali WA. M, Safwat NM. Eur. J. Med. Chem. 2017; 127: 10
  • 9 Jameel E, Meena P, Maqbool M, Kumar J, Ahmed W, Mumtazuddin S, Tiwari M, Hoda N, Jayaram B. Eur. J. Med. Chem. 2017; 136: 36
  • 10 Shahari MS. B, Junaid A, Tiekink ER. T, Dolzhenko AV. Synthesis 2021; 53: 2457
  • 11 Masih A, Singh S, Agnihotri AK, Giri S, Shrivastava JK, Pandey N, Bhat HR, Singh UP. Neurosci. Lett. 2020; 735: 135222
    • 12a Mondal J, Sivaramakrishna A. Top. Curr. Chem. 2022; 380: 34
    • 12b von Angerer S. In Science of Synthesis, Vol. 17. Weinreb SM, Schaumann E. Thieme; Stuttgart: 2004: 449
    • 13a Spychal J. Synth. Commun. 1997; 27: 127
    • 13b Alsofrom D, Grossberg H, Sheffer H. J. Heterocycl. Chem. 1976; 13: 917
    • 13c Kabbe H.-J, Eiter K, Moller F. Liebigs Ann. Chem. 1967; 704: 140
  • 14 Russel PB, Hitchings GH. J. Am. Chem. Soc. 1950; 72: 4922
  • 15 Huffman KR, Schaefer FC. J. Org. Chem. 1963; 28: 1816
  • 16 Huffman KR, Schaefer FC. J. Org. Chem. 1963; 28: 1812
    • 17a Narender A, Chary MT, Laxminarayana E, Haripryia V. Indian J. Chem. 2013; 52: 440
    • 17b Kelarev VI, Karakhanov RA, Bullul M, Ushakova RL, Mikaya AI. Chem. Heterocycl. Compd. 1988; 24: 550
  • 18 Pan L, Li Z, Ding T, Fang X, Zhang W, Xu H, Xu Y. J. Org. Chem. 2017; 82: 10043
    • 19a Barbosa YC. M, Paveglio GC, de Pereira CM. P, Moura S, Schwalm CS, Casagrande GA, Pizzuti L. Beilstein J. Org. Chem. 2022; 18: 1079
    • 19b Casadia I, Daher TO, Moura S, Back DF, Faoro E, Schwalm CS, Casagrande GA, Paveglio GC, Pizzuti L. Synthesis 2021; 53: 365
    • 19c de Albuquerque DY, Damim AC, Faoro E, Casagrande GA, Back DF, Moura S, Pereira CM. P, de Oliveira KM. P, Pizzuti L. J. Braz. Chem. Soc. 2020; 31: 746
    • 20a dos Santos EF. S, Cury NM, do Nascimento TA, Raminelli C, Casagrande GA, Pereira CM. P, Simionatto E, Yunes JA, Pizzuti L. J. Braz. Chem. Soc. 2017; 28: 217
    • 20b Oliveira S, Pizzuti L, Quina F, Flores A, Lund R, Lencina C, Pacheco BS, Pereira CM. P, Piva E. Molecules 2014; 19: 5806
  • 21 Glowka ML, Iwanicka I. Acta Crystallogr., Sect. C 1989; 45: 1765
  • 22 Favarin LR. V, Oliveira LB, Silva H, Michelleti AC, Pizzuti L, Machulek A, Caires AL. R, Back DF, Lima SM, Andrade LH. C, Duarte LF. B, Pinto LM. C, Casagrande GA. Inorg. Chim. Acta 2019; 492: 235
  • 23 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
  • 24 Farrugia LJ. J. Appl. Crystallogr. 1997; 30: 565
  • 25 CCDC 2184758 (3a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 26 Hatano T, Miyauchi S, Nishiyama Y, Ouchi H, Yamagata K, Tachikawa T. JP 2020158450 A, 2020
  • 27 Chessari G, Congreve MS, Callaghan O, Cowan SR, Murray CW, Woolford AJ.-A, O’Brien MA, Woodhead AJ. WO 2006123165 A2, 2006
  • 28 Hoelzl W, Eichacker G, Preuss A. WO 2004013124 A1, 2004