Synthesis 2023; 55(03): 369-399
DOI: 10.1055/a-1951-2726
review

Recent Advances on the Development of Synthetic Strategies to Access Dibenzoxepine Derivatives

Sanjay Yadav
a   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
,
Jakkula Ramarao
a   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
,
Surisetti Suresh
a   Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
› Author Affiliations
We thank the Council of Scientific and Industrial Research, New Delhi, India for financial support (ref. no. 34/1/TD-CLP/NCP-FBR 2020-RPPBDD-TMD–Se-MI).


Abstract

Dibenzoxepines have gained privileged status in medicinal chemistry and drug discovery due to their appearance in various natural products and life-saving drug molecules. Dibenzoxepine-based molecules, such as artocarpols, asenapine, and pacharin, possess a wide range of biological activities including anti-inflammatory, antidepressant, antihypertensive, antiestrogenic, and insecticidal activities. Therefore, designing and developing new methodologies to access the dibenzoxepine­ core has become a paramount research topic for organic/ medicinal chemists. Herein, we reviewed various synthetic methods to access dibenzoxepine derivatives. The total syntheses of dibenzoxepine-based natural products and biologically/medicinally important molecules have also been reviewed.

1 Introduction

2 Transition-Metal-Free Approaches

2.1 Acid-Mediated Transformations

2.2 Base-Mediated Transformations

2.3 NHC-Organocatalyzed Transformations

2.4 Miscellaneous

3 Metal-Mediated Approaches

4 Transition-Metal-Catalyzed Approaches

4.1 Iron-Catalyzed Transformations

4.2 Copper-Catalyzed Transformations

4.3 Ruthenium-Catalyzed Transformations

4.4 Palladium-Catalyzed Transformations

4.5 Other Transition-Metal-Catalyzed Transformations

5 Total Syntheses

6 Conclusion



Publication History

Received: 05 August 2022

Accepted after revision: 27 September 2022

Accepted Manuscript online:
27 September 2022

Article published online:
28 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ulubelen A, Tuzlaci E, Atilan N. Phytochemistry 1989; 28: 649
    • 1b Qiun T.-X, Li L.-N. Phytochemistry 1992; 31: 1068
    • 1c Ko H.-H, Yang S.-Z, Lin C.-N. Tetrahedron Lett. 2001; 42: 5269
    • 1d Snyder NL, Haines HM, Peczuh MW. Tetrahedron 2006; 62: 9301
    • 2a Anjaneyulu AS. R, Reddy AV. R, Reddy DS. K, Ward RS, Adhikesavalu D, Cameron TS. Tetrahedron 1984; 40: 4245
    • 2b Chung M.-I, Ko H.-H, Yen M.-H, Lin C.-N, Yang S.-Z, Tsao L.-T, Wang J.-P. Helv. Chim. Acta 2000; 83: 1200
    • 2c Fernández J, Alonso JM, Andrés JI, Cid JM, Díaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA. J. Med. Chem. 2005; 48: 1709
    • 2d Pettit GR, Numata A, Iwamoto C, Usami Y, Yamada T, Ohishi H, Cragg GM. J. Nat. Prod. 2006; 69: 323
    • 2e Mu L.-H, Li J.-B, Yang J.-Z, Zhang D.-M. J. Asian Nat. Prod. Res. 2007; 9: 649
    • 3a Ong HH, Profitt JA, Anderson VB, Spaulding TC, Wilker JC, Geyer HM. III, Kruse H. J. Med. Chem. 1980; 23: 494
    • 3b Nagai Y, Irie A, Nakamura H, Hino K, Uno H, Nishimura H. J. Med. Chem. 1982; 25: 1065
    • 3c Acton D, Hill G, Tait BS. J. Med. Chem. 1983; 26: 1131
    • 3d Roeder T, Nathanson JA. Neurochem. Res. 1993; 18: 921
    • 3e Kiyama R, Honma T, Hayashi K, Ogawa M, Hara M, Fujimoto M, Fujishita T. J. Med. Chem. 1995; 38: 2728
    • 4a Lin CN, Yang SZ. Helv. Chim. Acta 2000; 83: 3000
    • 4b Lu Y.-H, Lin C.-N, Ko H.-H, Yang S.-Z, Tsao L.-T, Yang J.-P. Helv. Chim. Acta 2002; 85: 1626
  • 5 Kittakoop P, Nopichai S, Thongon N, Charoenchai P, Thebtaranonth Y. Helv. Chim. Acta 2004; 87: 175
  • 6 Lin Y.-L, Chang Y.-Y, Kuo Y.-H, Shiao M.-S. J. Nat. Prod. 2002; 65: 745
    • 7a Zimmermann K, Roggo S, Kragten E, Fürst P, Waldmeier P. Bioorg. Med. Chem. Lett. 1998; 8: 1195
    • 7b Sagot Y, Toni N, Perrelet D, Lurot S, King B, Rixner H, Mattenberger L, Waldmeier PC, Kato AC. Br. J. Pharmacol. 2000; 131: 721
    • 7c Shahid M, Walker G, Zorn S, Wong E. J. Psychopharmacol. 2009; 23: 65
    • 7d Hounsou C, Baehr C, Gasparik V, Alili D, Belhocine A, Rodriguez T, Dupuis E, Roux T, Mann A, Heissler D, Pin J.-P, Durroux T, Bonnet D, Hibert M. J. Med. Chem. 2018; 61: 174
  • 8 Midha KK, Hubbard JW, Mckay G, Haws EM, Korchinski ED, Gurnsy T, Cooper JK, Schwede R. Eur. J. Clin. Pharmacol. 1992; 42: 539
    • 9a Ohshima E, Otaki S, Sato H, Kumazawa T, Obase H, Ishii A, Ishii H, Ohmori K, Hirayama N. J. Med. Chem. 1992; 35: 2074e
    • 9b Kaliner MA, Oppenheimer J, Farrar JR. Allergy Asthma Proc. 2010; 31: 112
  • 10 Olivera R, Sanmartin R, Churruca F, Domínguez E. Org. Prep. Proced. Int. 2004; 36: 297
  • 11 Storz T, Vangrevelinghe E, Dittmar P. Synthesis 2005; 2562
  • 12 Colombel V, Baudoin O. J. Org. Chem. 2009; 74: 4329
  • 13 Reddy CR, Ramesh P, Rao NN, Ali SA. Eur. J. Org. Chem. 2011; 2133
  • 14 Dobelmann L, Parham A, Büsing A, Buchholz H, König B. RSC Adv. 2014; 4: 60473
  • 15 Wang J, Liu J, Lan H, Chu W, Sun Z. Synthesis 2015; 47: 3049
  • 16 Guastavino JF, Rossi RA. J. Org. Chem. 2012; 77: 460
  • 17 Choi YL, Lim HS, Lim HJ, Heo J.-N. Org. Lett. 2012; 14: 5102
  • 18 Krawczyk H, Wrzesiński M, Mielecki D, Szczeciński P, Grzesiuk E. Tetrahedron 2016; 72: 3877
  • 19 Asai S, Kato M, Monguchi Y, Sajiki H, Sawama Y. Chem. Commun. 2017; 53: 4787
  • 20 Taweesak P, Thongaram P, Kraikruan P, Thanetchaiyakup A, Chuanopparat N, Hsieh H.-P, Uang B.-J, Ngernmeesri P. J. Org. Chem. 2021; 86: 1955
  • 21 Li K, Zhang K, Huang H, Zhang Q, Song C, Chang J. Asian J. Org. Chem. 2021; 10: 1765
  • 22 Feofanov M, Akhmetov V, Takayama R, Amsharov K. Angew. Chem. Int. Ed. 2021; 60: 5199
  • 23 Satyam K, Ramarao J, Suresh S. Org. Biomol. Chem. 2021; 19: 1488
  • 24 Yadav S, Suresh S. Asian J. Org. Chem. 2021; 10: 1406
  • 25 Xia Q, Zhao X, Zhang J, Wang J, Song G. Tetrahedron Lett. 2020; 61: 151500
  • 26 Kennedy SH, Dherange BD, Berger KJ, Levin MD. Nature 2021; 593: 223
  • 27 Qin H, Cai W, Wang S, Guo T, Li G, Lu H. Angew. Chem. Int. Ed. 2021; 60: 20678
  • 28 Cong Z, Miki T, Urakawa O, Nishino H. J. Org. Chem. 2009; 74: 3978
  • 29 Edwards DJ, Hadfield JA, Wallace TW, Ducki S. Org. Biomol. Chem. 2011; 9: 219
  • 30 Moreno DR. R, Giorgi G, Salas CO, Tapia RA. Molecules 2013; 18: 14797
  • 31 Bera K, Jalal S, Sarkar S, Jana U. Org. Biomol. Chem. 2014; 12: 57
  • 32 Scoccia J, Castro MJ, Faraoni MB, Bouzat C, Martín VS, Gerbino DC. Tetrahedron 2017; 73: 2913
  • 33 Panda N, Mattan I, Ojha S, Purohit CS. Org. Biomol. Chem. 2018; 16: 7861
  • 34 Wang Y, Chen Y, He Q, Xie Y, Yang C. Helv. Chim. Acta 2013; 96: 296
  • 35 Lim HS, Choi YL, Heo J.-N. Org. Lett. 2013; 15: 4718
  • 36 Stopka T, Marzo L, Zurro M, Janich S, Würthwein E.-U, Daniliuc CG, Alemán J, Mancheño OG. Angew. Chem. Int. Ed. 2015; 54: 5049
  • 37 Villuri BK, Ichake SS, Reddy SR, Kavala V, Bandi V, Kuo C.-W, Yao C.-F. J. Org. Chem. 2018; 83: 10241
  • 38 Bharath Y, Thirupathi B, Ranjit G, Mohapatra DK. Asian J. Org. Chem. 2013; 2: 848
  • 39 Matsuda T, Sato S. J. Org. Chem. 2013; 78: 3329
  • 40 Arnold LA, Luo W, Guy RK. Org. Lett. 2004; 6: 3005
  • 41 Parthasarathy K, Han H, Prakash C, Cheng C.-H. Chem. Commun. 2012; 48: 6580
  • 42 Jepsen TH, Larsen M, Jørgensen M, Nielsen MB. Synlett 2012; 418
  • 43 Majumdar KC, Ghosh T, Ponra S. Tetrahedron Lett. 2013; 54: 4661
  • 44 Dimitrijević E, Cusimano M, Taylor MS. Org. Biomol. Chem. 2014; 12: 1391
  • 45 Whitaker D, Batuecas M, Ricci P, Larrosa I. Chem. Eur. J. 2017; 23: 12763
  • 46 Ausekle E, Ehlers P, Villinger A, Langer P. J. Org. Chem. 2018; 83: 14195
  • 47 Fu W, Yu A, Jiang H, Zuo M, Wu H, Yang Z, An Q, Sun Z, Chu W. Org. Biomol. Chem. 2019; 17: 3324
  • 48 Deichert JA, Mizufune H, Patel JJ, Hurst TE, Maheta A, Kitching MO, Ross AC, Snieckus V. Eur. J. Org. Chem. 2020; 4693
  • 49 Chien C.-W, Teng Y.-HG, Honda T, Ojima I. J. Org. Chem. 2018; 83: 11623
  • 50 Sprenger K, Golz C, Alcarazo M. Eur. J. Org. Chem. 2020; 6245
  • 51 Luu QH, Li J. Chem. Sci. 2022; 13: 1095
  • 52 Liang T, Dong G, Li C, Xu X, Xu Z. Org. Lett. 2022; 24: 1817
  • 53 Rodrigues JA. R, Abramovitch RA, de Sousa JD. F, Leiva GC. J. Org. Chem. 2004; 69: 2920
  • 54 Nishimura K, Kinugawa M. Org. Process Res. Dev. 2012; 16: 225
  • 55 Cudaj J, Podlech J. Synlett 2012; 371
  • 57 Weinstabl H, Suhartono M, Qureshi Z, Lautens M. Angew. Chem. Int. Ed. 2013; 52: 5305
  • 58 Odagi M, Furukori K, Yamamoto Y, Sato M, Iida K, Yamanaka M, Nagasawa K. J. Am. Chem. Soc. 2015; 137: 1909
  • 59 Xu M, Hou M, He H, Gao S. Angew. Chem. Int. Ed. 2021; 60: 16655
  • 60 Cao J.-S, Zeng J, Xiao J, Wang X.-H, Wang Y, Peng Y. Chem. Commun. 2022; 58: 7273
  • 61 Anugu RR, Mainkar PS, Sridhar B, Chandrasekhar S. Org. Biomol. Chem. 2016; 14: 1332
  • 62 Szcześniak P, Staszewska-Krajewska O, Mlynarski J. Org. Biomol. Chem. 2019; 17: 3225
  • 63 Hansen MM, Kallman NJ, Koenig TM, Linder RJ, Richey RN, Rizzo JR, Ward JA, Yu H, Zhang TY, Mitchell D. Org. Process Res. Dev. 2017; 21: 208
  • 64 Wu K, Xie ZP, Cui D.-M, Zhang C. Org. Biomol. Chem. 2018; 16: 832