Zentralblatt für Chirurgie - Zeitschrift für Allgemeine, Viszeral-, Thorax- und Gefäßchirurgie, Table of Contents Zentralbl Chir 2022; 147(05): 432-438DOI: 10.1055/a-1938-8227 Übersicht Digitale Patientendaten, künstliche Intelligenz und maschinelles Lernen in der neuen Ära der endovaskulären Behandlung der Aorta Digital Patient Data, Artificial Intelligence and Machine Learning in the New Era of Endovascular Aortic Therapies Antonia Geisler 1 Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland (Ringgold ID: RIN39066) , Andrej Schmidt 2 Interventionelle Angiologie, Universitätsklinikum Leipzig, Leipzig, Deutschland (Ringgold ID: RIN39066) , Daniela Branzan 1 Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig, Deutschland (Ringgold ID: RIN39066) › Author Affiliations Recommend Article Abstract Buy Article Schlüsselwörter Schlüsselwörtermaschinelles Lernen - künstliche Intelligenz - Fusionsbildgebung - endovaskuläre Robotik - endovaskuläre Therapie - Aortenchirurgie Keywords Keywordsmachine learning - artificial intelligence - fusion imaging - endovascular robotics - aortic aneurysm - endovascular Full Text References Literatur 1 GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1204-1222 2 Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems. J Glob Health 2018; 8: 020303 3 McCarthy J, Minsky ML, Rochester N. et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine 2006; 27: 12 4 Raffort J, Adam C, Carrier M. et al. Fundamentals in Artificial Intelligence for Vascular Surgeons. Ann Vasc Surg 2020; 65: 254-260 5 Pirruccello JP, Chaffin MD, Chou EL. et al. Deep learning enables genetic analysis of the human thoracic aorta. Nat Genet 2022; 54: 40-51 6 Wanhainen A, Verzini van F, Herzeele I. et al. Editor’s Choice – European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. Eur J Vasc Endovasc Surg 2019; 57: 8-93 7 Bown MJ, Sweeting MJ, Brown LC. et al. Surveillance intervals for small abdominal aortic aneurysms: a meta-analysis. JAMA 2013; 309: 806-813 8 Martufi G, Di Martino ES, Amon CH. et al. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J Biomech Eng 2009; 131: 61015 9 Shum J, DiMartino ES, Goldhamme A. et al. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med Phys 2010; 37: 638-648 10 Filipovic N, Ivanovic M, Krstajic D. et al. Hemodynamic flow modeling through an abdominal aorta aneurysm using data mining tools. IEEE Trans Inf Technol Biomed 2011; 15: 189-194 11 Jordanski M, Radovic M, Milosevic Z. et al. Machine Learning Approach for Predicting Wall Shear Distribution for Abdominal Aortic Aneurysm and Carotid Bifurcation Models. IEEE J Biomed Health Inform 2018; 22: 537-544 12 Lee R, Bellamkonda K, Jones A. et al. Flow Mediated Dilatation and Progression of Abdominal Aortic Aneurysms. Eur J Vasc Endovasc Surg 2017; 53: 820-829 13 Lee R, Jarchi D, Perera R. et al. Applied Machine Learning for the Prediction of Growth of Abdominal Aortic Aneurysm in Humans. EJVES Short Rep 2018; 39: 24-28 14 Adam C, Fabre D, Mougin J. et al. Pre-surgical and Post-surgical Aortic Aneurysm Maximum Diameter Measurement: Full Automation by Artificial Intelligence. Eur J Vasc Endovasc Surg 2021; 62: 869-877 15 Caradu C, Spampinato B, Vrancianu AM. et al. Fully automatic volume segmentation of infrarenal abdominal aortic aneurysm computed tomography images with deep learning approaches versus physician controlled manual segmentation. J Vasc Surg 2021; 74: 246-256.e6 16 Maurel B, Martin-Gonzalez T, Chong D. et al. A prospective observational trial of fusion imaging in infrarenal aneurysms. J Vasc Surg 2018; 68: 1706-1713.e1 17 Cochennec F, Kobeiter H, Gohel M. et al. Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures. J Endovasc Ther 2015; 22: 187-193 18 Rolls A, Riga C. Endovascular robotics. Ann R Coll Surg Engl 2018; 100 (Suppl. 07) S14-S17 19 Perera AH, Riga CV, Monzon L. et al. Robotic Arch Catheter Placement Reduces Cerebral Embolization During Thoracic Endovascular Aortic Repair (TEVAR). Eur J Vasc Endovasc Surg 2017; 53: 362-369 20 Patel R, Sweeting MJ, Powell JT. et al. Endovascular versus open repair of abdominal aortic aneurysm in 15-years’ follow-up of the UK endovascular aneurysm repair trial 1 (EVAR trial 1): a randomised controlled trial. Lancet 2016; 388: 2366-2374 21 Zaiem F, Almasri J, Tello M. et al. A systematic review of surveillance after endovascular aortic repair. J Vasc Surg 2018; 67: 320-331.e37 22 Karthikesalingam A, Attallah O, Ma X. et al. An Artificial Neural Network Stratifies the Risks of Reintervention and Mortality after Endovascular Aneurysm Repair; a Retrospective Observational study. PLoS One 2015; 10: e0129024 23 Hahn S, Perry M, Morris CS. et al. Machine deep learning accurately detects endoleak after endovascular abdominal aortic aneurysm repair. JVS Vasc Sci 2020; 1: 5-12 24 Lumsden AB, Bismuth J. Current status of endovascular catheter robotics. J Cardiovasc Surg (Torino) 2018; 59: 310-316 25 Cruddas L, Martin G, Riga C. Robotic endovascular surgery: current and future practice. Semin Vasc Surg 2021; 34: 233-240 26 Acemoglu D, Restrepo P. Artificial Intelligence, Automation, and Work. In: Agrawal A, Gans J, Goldfarb A. The Economics of artificial Intelligence: An Agenda. Chicago: University of Chicago Press; 2019: 197-236 Accessed September 12, 2022 at: https://www.nber.org/books-and-chapters/economics-artificial-intelligence-agenda/artificial-intelligence-automation-and-work