Subscribe to RSS
DOI: 10.1055/a-1922-8846
Transition-Metal-Free N-Arylation of N-Methoxysulfonamides and N,O-Protected Hydroxylamines with Trimethoxyphenyliodonium (III) Acetates
This work was partially supported by JSPS KAKENHI grant numbers 19K05466 (T.D.) and 18H02014 (K.K.) and JST CREST grant number JPMJCR20R1. T.D. also acknowledges support from the Ritsumeikan Global Innovation Research Organization (R-GIRO) project.
Abstract
Trimethoxyphenyliodonium(III) acetate [TMP-iodonium(III) acetate] functions as an efficient arylation reagent for N,O-protected hydroxylamines, generating aniline derivatives in the absence of transition metal catalysts. Various N-methoxysulfonamides participated in the amination reaction to produce the corresponding N-methoxysulfonylanilines. This amination reaction was compatible with several protecting groups, including Troc (2,2,2-trichloroethoxycarbonyl), Cbz (benzyloxycarbonyl), Boc (tert-butoxycarbonyl), benzyl, acetyl, and silyl groups. This method uses TMP-iodonium(III) acetate and efficiently synthesizes various aniline derivatives that are versatile synthetic intermediates for functional organic molecules.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1922-8846.
- Supporting Information
Publication History
Received: 05 July 2022
Accepted after revision: 11 August 2022
Accepted Manuscript online:
11 August 2022
Article published online:
23 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
- 1b Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 1c Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
- 1d Dong X, Liu Q, Dong Y, Liu H. Chem. Eur. J. 2017; 23: 2481
- 1e Hendrick CE, Wang Q. J. Org. Chem. 2017; 82: 839
- 1f Murakami K, Perry GJ. P, Itami K. Org. Biomol. Chem. 2017; 15: 6071
- 2 Bunnett JF, Zahler RE. Chem. Rev. 1951; 49: 273
- 3a Pummer WJ, Wall LA. Science 1958; 127: 643
- 3b Godsell JA, Stacey M, Tatlow JC. Nature 1956; 178: 199
- 3c Brooke GM, Burdon J, Stacey M, Tatlow JC. J. Chem. Soc. 1960; 1768
-
4a
Luo J,
Zhang J.
ACS Catal. 2016; 6: 873
- 4b Kikushima K, Koyama H, Kodama K, Dohi T. Molecules 2021; 26: 1365
- 5a Katritzky AR, Laurenzo KS. J. Org. Chem. 1988; 53: 3978
- 5b Pagoria PP, Mitchell AR, Schmidt RD. J. Org. Chem. 1996; 61: 2934
- 5c Mąkosza M, Białecki M. J. Org. Chem. 1998; 63: 4878
- 5d Błaziak K, Danikiewicz W, Mąkosza M. J. Am. Chem. Soc. 2016; 138: 7276
- 5e Mąkosza M. Synthesis 2017; 49: 3247
- 6 Tian Z.-Y, Ming X.-X, Teng H.-B, Hu Y.-T, Zhang C.-P. Chem. Eur. J. 2018; 24: 13744
- 7a Morofuji T, Shimizu A, Yoshida J.-i. J. Am. Chem. Soc. 2013; 135: 5000
- 7b Morofuji T, Shimizu A, Yoshida J.-i. J. Am. Chem. Soc. 2014; 136: 4496
- 8a Dohi T, Maruyama A, Minamitsuji Y, Takenaga N, Kita Y. Chem. Commun. 2007; 1224
- 8b Moroda A, Togo H. Synthesis 2008; 1257
- 8c Dohi T, Takenaga N, Fukushima K, Uchiyama T, Kato D, Shiro M, Fujioka H, Kita Y. Chem. Commun. 2010; 46: 7697
- 8d Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
- 8e Samanta R, Bauer JO, Strohmann C, Antonchick AP. Org. Lett. 2012; 14: 5518
- 8f Ito M, Kubo H, Itani I, Morimoto K, Dohi T, Kita Y. J. Am. Chem. Soc. 2013; 135: 14078
- 8g Lucchetti N, Scalone M, Fantasia S, Muñiz K. Adv. Synth. Catal. 2016; 358: 2093
- 8h Liang D, Yu W, Nguyen N, Deschamps JR, Imler GH, Li Y, MacKerell AD. Jr, Jiang C, Xue F. J. Org. Chem. 2017; 82: 3589
- 8i Dohi T, Sasa H, Dochi M, Yasui C, Kita Y. Synthesis 2019; 51: 1185
- 8j Sasa H, Mori K, Kikushima K, Kita Y, Dohi T. Chem. Pharm. Bull. 2022; 70: 106
- 9a Stang PJ, Zhdankin VV. Chem. Rev. 1996; 96: 1123
- 9b Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
- 9c Yusubov MS, Maskaev AV, Zhdankin VV. ARKIVOC 2011; (i): 370
- 9d Olofsson B. Top. Curr. Chem. 2016; 373. 135
- 9e Aradi K, Toth BL, Tolnai GL, Novák Z. Synlett 2016; 27: 1456
- 9f Villo P, Olofsson B. Arylations Promoted by Hypervalent Iodine Reagents. In Patai's Chemistry of Functional Groups (Hypervalent Halogen Compounds). Olofsson B, Marek I, Rappoport Z. Wiley; Chichester: 2019: 461-522
- 9g Takenaga N, Kumar R, Dohi T. Front. Chem. 2020; 8: 599026
- 9h Kikushima K, Elboray EE, Jiménez-Halla JO. C, Solorio-Alvarado CR, Dohi T. Org. Biomol. Chem. 2022; 22: 3231
- 10a Beringer FM, Drexler M, Gindler EM, Lumpkin CC. J. Am. Chem. Soc. 1953; 75: 2705
- 10b Beringer FM, Brierley A, Drexler M, Gindler EM, Lumpkin CC. J. Am. Chem. Soc. 1953; 75: 2708
- 11a Carroll MA, Wood RA. Tetrahedron 2007; 63. 11349
- 11b Linde E, Bulfield D, Kervefors G, Purkait N, Olofsson B. Chem 2022; 8: 850
- 12a Tinnis F, Stridfeldt E, Lundberg H, Adolfsson H, Olofsson B. Org. Lett. 2015; 17: 2688
- 12b Basu S, Sandtorv AH, Stuart DR. Beilstein J. Org. Chem. 2018; 14: 1034
- 12c Xu B, Han J, Wang L. Asian J. Org. Chem. 2018; 7: 1674
- 12d Kuriyama M, Hanazawa N, Abe Y, Katagiri K, Ono S, Yamamoto K. Chem. Sci. 2020; 11: 8295
- 12e Chen H, Wang L, Han J. Org. Lett. 2020; 22: 3581
- 13 Seidl TL, Stuart DR. J. Org. Chem. 2017; 82: 11765
- 14a Sandtorv AH, Stuart DR. Angew. Chem. Int. Ed. 2016; 55: 15812
- 14b Purkait N, Kervefors G, Linde E, Olofsson B. Angew. Chem. Int. Ed. 2018; 57: 11427
- 14c Bugaenko DI, Yurovskaya MA, Karchava AV. Org. Lett. 2018; 20: 6389
- 15 Yang Y, Wu X, Han J, Mao S, Qian X, Wang L. Eur. J. Org. Chem. 2014; 6854
- 16a Beletskaya IP, Davydov DV, Moreno-Mañas M. Tetrahedron Lett. 1998; 39: 5621
- 16b Zhou T, Chen Z.-C. Synth. Commun. 2002; 32: 903
- 16c Zhou T, Chen Z.-C. Heteroat. Chem. 2002; 13: 617
- 16d Niu H.-Y, Xia C, Qu G.-R, Zhang Q, Jiang Y, Mao R.-Z, Li D.-Y, Guo H.-M. Org. Biomol. Chem. 2011; 9: 5039
- 16e Lv T, Wang Z, You J, Lan J, Gao G. J. Org. Chem. 2013; 78: 5723
- 16f Howell TO, Huckaba AJ, Hollis TK. Org. Lett. 2014; 16: 2570
- 16g Koseki D, Aoto E, Shoji T, Watanabe K, In Y, Kita Y, Dohi T. Tetrahedron Lett. 2019; 60: 1281
- 17a Su X, Chen C, Wang Y, Chen J, Louac Z, Lic M. Chem. Commun. 2013; 49: 6752
- 17b Wang Y, Chen C, Peng J, Li M. Angew. Chem. Int. Ed. 2013; 52: 5323
- 17c Wang Y, Chen C, Zhang S, Lou Z, Su X, Wen L, Li M. Org. Lett. 2013; 15: 4794
- 18a Nilova A, Sibbald PA, Valente EJ, González-Montiel GA, Richardson HC, Brown KS, Cheongand PH.-Y, Stuart DR. Chem. Eur. J. 2021; 27: 7168
- 18b Nilova A, Metze B, Stuart DR. Org. Lett. 2021; 23: 4813
- 19a Seidl TL, Sundalam SK, McCullough B, Stuart DR. J. Org. Chem. 2016; 81: 1998
- 19b Carreras V, Sandtorv AH, Stuart DR. J. Org. Chem. 2017; 82: 1279
- 19c Lindstedt E, Reitti M, Olofsson B. J. Org. Chem. 2017; 82: 11909
- 19d Dohi T, Koseki D, Sumida K, Okada K, Mizuno S, Kato A, Morimoto K, Kita Y. Adv. Synth. Catal. 2017; 359: 3503
- 19e China H, Koseki D, Samura K, Kikushima K, In Y, Dohi T. Data Brief 2019; 25: 104063
- 20a -Ref. 12b
- 20b Ref. 13
- 20c Ref. 14a
- 20d Ref. 16g
- 20e Ref. 18b
- 20f Ref. 19d
- 20g Gallagher RT, Basu S, Stuart DR. Adv. Synth. Catal. 2020; 362: 320
- 21 Kikushima K, Miyamoto N, Watanabe K, Koseki D, Kita Y, Dohi T. Org. Lett. 2022; 24: 1924
- 22 Drews J. Science 2000; 287: 1960
- 23 The solvent effects are presumably attributed to the solubility of starting materials. The present N-arylation proceeds via ligand exchange of amide with acetate anion of TMP-iodonium acetate followed by ligand coupling. We assume that the low solubility of TMP-iodonium acetate in toluene increased the relative concentration of soluble amide, which might accelerate the rate of ligand exchange step.
- 24 When the reaction was conducted in toluene, 4-nitrophenyl acetate was generated as a side product via direct ligand coupling of 2i. In this case, addition of water to exclude potassium acetate suppressed the side reaction to afford 3ai in relatively high yield (84%).
- 25a Fukuyama T, Jow C.-K, Cheung M. Tetrahedron Lett. 1995; 36: 6373
- 25b Kan T, Fukuyama T. Chem. Commun. 2004; 353
- 26a Nakamura I, Jo T, Ishida Y, Tashiro H, Terada M. Org. Lett. 2017; 19: 3059
- 26b Ishida Y, Nakamura I, Terada M. J. Am. Chem. Soc. 2018; 140: 8629
- 27 For removal of methoxy group of N-methoxysulfonamide via pyrolysis, see: Li Q, Zhang M, Zhan S, Gu Z. Org. Lett. 2019; 21: 6374
- 28a Javorskis T, Orentas E. J. Org. Chem. 2017; 82: 13423
- 28b Newcomer R, McKee J, Zanger M. Synth. Commun. 2016; 46: 949
- 29a Miyabe H, Asada R, Takemoto Y. Org. Biomol. Chem. 2012; 10: 3519
- 29b Miller SP, Zhong Y.-L, Liu Z, Simeone M, Yasuda N, Limanto J, Chen Z, Lynch J, Capodanno V. Org. Lett. 2014; 16: 174
- 29c Takahashi K, Ikura M, Habashita H, Nishizaki M, Sugiura T, Yamamoto S, Nakatani S, Ogawa K, Ohno H, Nakai H, Toda M. Bioorg. Med. Chem. 2005; 13: 4527
- 29d Chen YK, Yoshida M, MacMillan DW. J. Am. Chem. Soc. 2006; 128: 9328
For selected examples, see:
For selected reviews, see:
For the preparation of TMP-iodonium(III) salts, see:
For selected examples, see:
For copper-catalyzed [1,3] methoxy rearrangement of N-methoxyamide, see: