Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(01): 14-22
DOI: 10.1055/a-1915-8491
DOI: 10.1055/a-1915-8491
synpacts
Rhodium-Catalyzed Ring Expansion and Ring Opening of Azetidines: Domino Conjugate Addition/Inert-Bond Activation
We thank the National Natural Science Foundation of China (21702164) for financial support. The project was also supported by the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002).
![](https://www.thieme-connect.de/media/synlett/202301/lookinside/thumbnails/st-2022-p0326-sp_10-1055_a-1915-8491-1.jpg)
Abstract
Domino conjugate addition/inert-bond activation is a useful strategy for improving the efficiency of synthesis. We summarize reports on domino conjugate addition/inert-bond activation and its applications in the rhodium-catalyzed ring-expansion and ring-opening reactions of azetidines.
1 Introduction
2 Rhodium-Catalyzed Domino Conjugate Addition/β-C Cleavage/ Protonation
3 Rhodium-Catalyzed Domino Conjugate Addition/N-Directed α-C(sp3)–H Activation
4 Conclusion
Key words
conjugate addition - ring opening - ring expansion - transition-metal catalysis - inert-bond activation - azetidinesPublication History
Received: 18 July 2022
Accepted after revision: 02 August 2022
Accepted Manuscript online:
02 August 2022
Article published online:
21 September 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Feringa BL, Pineschi M, Arnold LA, Imbos R, de Vries AH. M. Angew. Chem. Int. Ed. 1997; 36: 2620
- 1b Naasz R, Arnold LA, Pineschi M, Keller E, Feringa BL. J. Am. Chem. Soc. 1999; 121: 1104
- 1c Degrado SJ, Mizutani H, Hoveyda AH. J. Am. Chem. Soc. 2001; 123: 755
- 1d Agapiou K, Cauble DF, Krische MJ. J. Am. Chem. Soc. 2004; 126: 4528
- 1e Li K, Alexakis A. Tetrahedron Lett. 2005; 46: 5823
- 1f Wang H.-F, Cui H.-F, Chai Z, Li P, Zheng C.-W, Yang Y.-Q, Zhao G. Chem. Eur. J. 2009; 15: 13299
- 1g Wang L, Meng W, Zhu C.-L, Zheng Y, Nie J, Ma J.-A. Angew. Chem. Int. Ed. 2011; 50: 9442
- 2a Labinger JA, Bercaw JE. Nature 2002; 417: 507
- 2b Balcells D, Clot E, Eisenstein O. Chem. Rev. 2010; 110: 749
- 2c Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
- 3a Song F, Gou T, Wang B.-Q, Shi Z.-J. Chem. Soc. Rev. 2018; 47: 7078
- 3b Deng L, Dong G. Trends Chem. 2019; 2: 183
- 4 Shintani R, Hayashi T. Org. Lett. 2011; 13: 350
- 5 Matsuda T, Suda Y, Takahashi A. Chem. Commun. 2012; 48: 2988
- 6 Gao A, Liu X.-Y, Li H, Ding C.-H, Hou X.-L. J. Org. Chem. 2017; 82: 9988
- 7a Seiser T, Saget T, Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 7740
- 7b Mack DJ, Njardarson JT. ACS Catal. 2013; 3: 272
- 7c Jiao L, Yu Z.-X. J. Org. Chem. 2013; 78: 6842
- 7d Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
- 7e Chen P.-h, Billett BA, Tsukamoto T, Dong G. ACS Catal. 2017; 7: 1340
- 7f Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
- 8 Yang X, Kong W.-Y, Gao J.-N, Cheng L, Li N.-N, Li M, Li H.-T, Fan J, Gao J.-M, Ouyang Q, Xie J.-B. Chem. Commun. 2019; 55: 12707
- 9a Chatani N, Asaumi T, Yorimitsu S, Ikeda T, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2001; 123: 10935
- 9b Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
- 9c Peschiulli A, Smout V, Storr TE, Mitchell EA, Eliáš Z, Herrebout W, Berthelot D, Meerpoel L, Maes BU. W. Chem.Eur. J. 2013; 19: 10378
- 9d Kawamorita S, Miyazaki T, Iwai T, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2012; 134: 12924
- 9e Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140
- 9f Tran AT, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 10530
- 10a Willcox D, Chappell BG. N, Hogg KF, Calleja J, Smalley AP, Gaunt MJ. Science 2016; 354: 851
- 10b Smalley AP, Cuthbertson JD, Gaunt MJ. J. Am. Chem. Soc. 2017; 139: 1412
- 10c Cabrera-Pardo JR, Trowbridge A, Nappi M, Ozaki K, Gaunt MJ. Angew. Chem. Int. Ed. 2017; 56: 11958
- 11a Zhu R.-Y, Liu L.-Y, Park HS, Hong K, Wu Y, Senanayake CH, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 16080
- 11b Zhuang Z, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 12015
- 11c Antien K, Geraci A, Parmentier M, Baudoin O. Angew. Chem. Int. Ed. 2021; 60: 22948
- 12 Sun L.-Z, Yang X, Li N.-N, Li M, Ouyang Q, Xie J.-B. Org. Lett. 2022; 24: 1883
- 13a Zhu W, Cai G, Ma D. Org. Lett. 2005; 7: 5545
- 13b Xiang J, Xie H, Li Z, Dang Q, Bai X. Org. Lett. 2015; 17: 3818
- 13c Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
- 13d Magedov IV, Luchetti G, Evdokimov NM, Manpadi M, Steelant WF. A, Van slambrouck S, Tongwa P, Antipin MY, Kornienko A. Bioorg. Med. Chem. Lett. 2008; 18: 1392
- 13e Marti C, Carreira EM. J. Am. Chem. Soc. 2005; 127: 11505
- 13f Castellano S, Fiji HD. G, Kinderman SS, Watanabe M, de Leon P, Tamanoi F, Kwon O. J. Am. Chem. Soc. 2007; 129: 5843
- 13g Ye Z, Shi L, Shao X, Xu X, Xu Z, Li Z. J. Agric. Food Chem. 2013; 61: 312
- 14 Dilman AD, Belyakov PA, Struchkova MI, Arkhipov DE, Korlyukov AA, Tartakovsky VA. J. Org. Chem. 2010; 75: 5367
- 15 Grubbs RH, Burk PL, Carr DD. J. Am. Chem. Soc. 1975; 97: 3265
- 16a Gierz V, Urbanaite A, Seyboldt A, Kunz D. Organometallics 2012; 31: 7532
- 16b Karaca EO, Düşünceli SD, Gürbüz N, Özdemir I. J. Mol. Struct. 2020; 1216: 128351
- 17 Burg F, Rovis T. J. Am. Chem. Soc. 2021; 143: 17964s
For selected examples of domino conjugate addition/electrophile capture, see:
For selected reviews on transition-metal-catalyzed C–H activation, see:
For selected reviews on transition-metal-catalyzed C–C activation, see:
For selected reviews on rhodium-catalyzed C–C bond activation of strained rings, see:
For selected examples of additional directing-group directed α-C(sp3)–H activations of amines, see:
For selected examples of N-directed β-C(sp3)–H activation, see:
For selected examples of N-directed γ-C(sp3)–H activation, see: