Subscribe to RSS
DOI: 10.1055/a-1906-0960
Noise and Critical Sound Levels During Non-Invasive Ventilation of a Preterm Infant in the Incubator
Lärm und kritische Schallpegel während der nicht-invasiven Beatmung eines Frühgeborenen im Inkubator Funding Funded by Center of Digital Neurotechnologies Saar and by the BMBF (PRIMAL Clinical Study 01GL1746D).Abstract
Background Preterm birth and the subsequent necessary treatment in neonatal intensive care units (NICU) subjects the preterm infant to non-physiological noise exposure with potentially adverse consequences for short- and long-term development. Adjusters to improve the acoustic environment for the preterm infant need to be defined.
Methods Sound pressure level measurements during routine procedures in a NICU were performed by ¼” microphones placed inside and outside the incubator. The microphones need to be suitably positioned to measure sound pressure levels that are representative for the sound field inside and outside the incubator. The sound pressure level spectra generated by respiratory support and corresponding monitor alarms were compared.
Results Inside the incubator, higher sound level pressures (in dBA) were generated primarily by the use of the system components of the incubator itself than outside, whereas when the incubator was closed, it had an insulating effect on sounds generated in the NICU. Non-invasive ventilation resulted in an increase in sound pressure levels from 50 to 60 dBA in the neonate’s environment, with sound pressure levels increasing particularly in the frequency range above 1 kHz.
Conclusion Preterm infants are exposed to high sound levels, especially in the non-physiological high-frequency range, particularly during non-invasive ventilation. The continuous sound exposure could be further reduced to some extent by an optimized design of the incubator.
Zusammenfassung
Hintergrund Frühgeburt und die anschließend notwendige Behandlung auf der Neugeborenen- Intensivstation (NICU) setzen das Frühgeborene einer unphysiologischen Schallexposition mit potentiell nachteiligen Folgen für die kurz- und langfristige Entwicklung aus. Stellschrauben zur Verbesserung der akustischen Umgebung für das Frühgeborene müssen definiert werden.
Methodik Schalldruckpegelmessungen während der Routineabläufe auf einer NICU wurden durch inner- und außerhalb des Inkubators angebrachte ¼“ Messmikrophone durchgeführt. Dabei müssen die Mikrofone so platziert werden, dass die gemessenen Schalldruckpegel repräsentativ für die Schallfelder innerhalb und außerhalb des Inkubators sind. Die durch Atemunterstützung, Routinemanipulationen und Monitoralarme erzeugten Schalldruckpegelspektren wurden vergleichend dargestellt.
Ergebnisse Im Inkubators entstanden während der Routineversorgung z. B. durch das Türenöffnen und die Höhenverstellung höhere Schallpegeldrücke (in dBA) als außerhalb, während der Inkubator bei geschlossenen Türen schallabsorbierend auf Umgebungsgeräusche wirkte. Nicht-invasive Beatmung führte zu einer Erhöhung des Schalldruckpegels von 50 auf 60 dBA in der Umgebung des Frühgeborenen, wobei der Schalldruckpegel insbesondere im Frequenzbereich oberhalb von 1 kHz anstieg.
Schlussfolgerung Frühgeborene sind besonders bei nicht-invasiver Beatmung einer hohen Schallbelastung vor allem im unphysiologischen Hochtonbereich ausgesetzt. Die Schallbelastung könnte durch eine optimierte Bauweise des Inkubators weiter verringert werden.
Key words
neonatal incubator - NICU - noise - sound pressure level spectra - respiratory support - ventilationPublication History
Article published online:
15 September 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
References
- 1 Abou Turk C, Williams AL, Lasky RE. A randomized clinical trial evaluating silicone earplugs for very low birth weight newborns in intensive care. J Perinatol 2009; 29: 358-363
- 2 Adams C, Stutz R, Kaiser E. et al. Noise control engineering on neonatal incubators. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 2021; 263: 3217-3217
- 3 Bartha-Doering L, Alexopoulos J, Giordano V. et al. Absence of neural speech discrimination in preterm infants at term-equivalent age. Dev Cogn Neurosci 2019; 39: 100679
- 4 Belteki G, Morley CJ. Frequency, duration and cause of ventilator alarms on a neonatal intensive care unit. Arch Dis Child Fetal Neonatal Ed 2018; 103: F307-F311
- 5 Bertsch M, Reuter C, Czedik-Eysenberg I. et al. The “Sound of Silence” in a Neonatal Intensive Care Unit – Listening to Speech and Music Inside an Incubator. Front Psychol 2020; 11: 1055
- 6 Birnholz JC, Benacerraf BR. The development of human fetal hearing. Science 1983; 222: 516-518
- 7 Chang EF, Merzenich MM. Environmental noise retards auditory cortical development. Science 2003; 300: 498-502
- 8 Gerhardt KJ, Abrams RM. Fetal exposures to sound and vibroacoustic stimulation. J Perinatol 2000; 20: S21-S30
- 9 Graven SN. Sound and the developing infant in the NICU: conclusions and recommendations for care. J Perinatol 2000; 20: S88-S93
- 10 Guillén Ú, Weiss EM, Munson D. et al. Guidelines for the Management of Extremely Premature Deliveries: A Systematic Review. Pediatrics 2015; 136: 343
- 11 Hall JW. Development of the ear and hearing. J Perinatol 2000; 20: S12-S20
- 12 Hepper PG, Shahidullah BS. Development of fetal hearing. Arch Dis Child Fetal Neonatal Ed 1994; 71: F81-F87
- 13 Hintz SR, Kendrick DE, Vohr BR. et al. Gender differences in neurodevelopmental outcomes among extremely preterm, extremely-low-birthweight infants. Acta Paediatr 2006; 95: 1239-1248
- 14 Hunt RW, Hickey LM, Burnett AC. et al. Early surgery and neurodevelopmental outcomes of children born extremely preterm. Arch Dis Child Fetal Neonatal Ed 2018; 103: F227-F232
- 15 Hutchinson G, Du L, Ahmad K. Incubator-based Sound Attenuation: Active Noise Control In A Simulated Clinical Environment. PLoS One 2020; 15: e0235287
- 16 Karam O, Donatiello C, Van Lancker E. et al. Noise levels during nCPAP are flow-dependent but not device-dependent. Arch Dis Child Fetal Neonatal Ed 2008; 93: F132-F134
- 17 Kuhn P, Zores C, Pebayle T. et al. Infants born very preterm react to variations of the acoustic environment in their incubator from a minimum signal-to-noise ratio threshold of 5 to 10 dBA. Pediatr Res 2012; 71: 386-392
- 18 Lang A, del Giudice R, Schabus M. Sleep, Little Baby: The Calming Effects of Prenatal Speech Exposure on Newborns’ Sleep and Heartrate. Brain Sciences 2020; 10: 511
- 19 Litovsky R. Development of the auditory system. Handb Clin Neurol 2015; 129: 55-72
- 20 McMahon E, Wintermark P, Lahav A. Auditory brain development in premature infants: the importance of early experience. Ann N Y Acad Sci 2012; 1252: 17-24
- 21 Pierre RLS, Maguire DJ, Automotive CS. The impact of A-weighting sound pressure level measurements during the evaluation of noise exposure. In: Conference NOISE-CON. 2004
- 22 Pierson M, Li D. Cochlear integrity in rats with experimentally induced audiogenic seizure susceptibility. Hear Res 1996; 101: 7-13
- 23 Puyana-Romero V, Núñez-Solano D, Hernández-Molina R. et al. Influence of the NICU on the Acoustic Isolation of a Neonatal Incubator. Front Pediatr 2020; 8: 588
- 24 Roberts CT, Dawson JA, Alquoka E. et al. Are high flow nasal cannulae noisier than bubble CPAP for preterm infants?. Arch Dis Child Fetal Neonatal Ed 2014; 99: F291-F296
- 25 Rossing TD. Springer Handbook of Acoustics. 2. Aufl. New York: Springer; 2014
- 26 Sun W, Tang L, Allman BL. Environmental noise affects auditory temporal processing development and NMDA-2B receptor expression in auditory cortex. Behav Brain Res 2011; 218: 15-20
- 27 Surenthiran S, Wilbraham K, May J. et al. Noise levels within the ear and post-nasal space in neonates in intensive care. Arch Dis Child Fetal Neonatal Ed 2003; 88: F315-F318
- 28 Wachman EM, Lahav A. The effects of noise on preterm infants in the NICU. Archives of Disease in Childhood - Fetal and Neonatal Edition 2011; 96: F305-F309
- 29 Winkel S, Bonding P, Larsen PK. et al. Possible effects of kanamycin and incubation in newborn children with low birth weight. Acta Paediatr Scand 1978; 67: 709-715
- 30 Wirth L, Dorn F, Wege M. et al. Effects of standardized acoustic stimulation in premature infants: a randomized controlled trial. J Perinatol 2016; 36: 486-492