Subscribe to RSS
DOI: 10.1055/a-1883-9281
Influence of CT metal artifact reduction on SPECT/CT quantification of bone scintigraphy – Retrospective study for selected types of metal implants
Einfluss der CT-Metallartefaktreduktion auf die SPECT/CT-Quantifizierung der Skelettszintigrafie – Retrospektive Studie für ausgewählte Arten von MetallimplantatenAbstract
Aim Implanted metal prostheses can cause severe artifacts in reconstructed computed tomography (CT) images. To reduce the diagnostic impact of these artifacts and improve attenuation correction in single photon emission computed tomography (SPECT), an algorithm of iterative metal artifact reduction (iMAR) for SPECT/CT systems was developed. The aims of this study were (a) to assess the difference in visual image quality by comparing CT and SPECT images reconstructed with and without iMAR and (b) to determine the influence of iMAR on quantitative 99mTc-uptake in SPECT/CT.
Methods This retrospective study includes 21 patients with implanted metal prostheses who underwent SPECT/CT bone scintigraphy. CT data were reconstructed with iMAR and without (noMAR) and were used for attenuation correction of SPECT data for xSPECT Quant and xSPECT Bone reconstruction. The effect of iMAR on image quality was evaluated by visual analysis and the effect on quantitative SPECT/CT was assessed by measuring HU values and absolute uptake values (kBq/mL) in volumes of interest (VOIs).
Results There was a significant reduction of visible metal artifacts with iMAR (p<0.01) in the CT images, but visual differences in the SPECT images were minor. The values of quantitative tracer uptake in VOIs near metal implants were lower for iMAR vs. noMAR xSPECT Quant (p<0.01). Only VOIs near metal showed significant differences in HU values, which were 14.6% lower for iMAR CT (p<0.01).
Conclusion The use of iMAR reduces metal artifacts in CT and improves the perceived image quality. Although in some cases a significant difference in the quantitative evaluation of SPECT/CT was observed, the influence of iMAR can be considered small in relation to other factors in the clinical setting.
Zusammenfassung
Ziel Implantierte Metallprothesen verursachen schwere Artefakte in rekonstruierten Computertomografiebildern (CT). Zur Verbesserung der diagnostischen Aussagekraft und der Schwächungskorrektur in der Einzelphotonen-Emissionscomputertomografie (SPECT) wurde ein Algorithmus zur iterativen Reduktion von Metallartefakten (iMAR) für SPECT/CT-Systeme entwickelt. Ziel der Studie war es, (a) den visuellen Unterschied durch den Vergleich von CT- und SPECT-Bildern, rekonstruiert mit und ohne iMAR, zu bewerten und (b) den Einfluss von iMAR auf die quantitative 99mTc-Aufnahme bei der SPECT/CT zu bestimmen.
Methoden Die retrospektive Studie umfasst 21 Patient*innen mit implantierten Metallprothesen, bei denen eine SPECT/CT-Knochenszintigrafie durchgeführt wurde. Die CT-Daten wurden mit iMAR und ohne (noMAR) rekonstruiert und zur Schwächungskorrektur der SPECT-Daten für die xSPECT-Quant- und xSPECT-Bone-Rekonstruktion verwendet. Der Effekt von iMAR auf die Bildqualität wurde durch eine visuelle Analyse bewertet, und der Einfluss auf die quantitative SPECT/CT wurde durch Messung der HU-Werte und der absoluten Aufnahmewerte (kBq/mL) beurteilt.
Ergebnisse Im Gegensatz zu den SPECT-Bildern wurden durch iMAR die Artefakte in den CT-Bildern signifikant reduziert (p<0,01). Die Werte der Tracer-Aufnahme nahe der Metallimplantate waren bei iMAR im Vergleich zu noMAR xSPECT Quant geringer (p<0,01). Bei den CT-HU-Werten betrug dieser Unterschied 14,6% (p<0,01).
Schlussfolgerung Die Anwendung von iMAR reduziert Metallartefakte in der CT und verbessert die Bildqualität. Obwohl teilweise signifikante Unterschiede in der quantitativen SPECT/CT-Auswertung beobachtet wurden, kann der Einfluss von iMAR im Verhältnis zu anderen Faktoren in der Klinik als gering angesehen werden.
Keywords
iMAR - Bone-Scintigraphy - quantitative SPECT reconstruction - metal artifacts - Tc-99m-DPDPublication History
Received: 29 March 2022
Accepted after revision: 17 June 2022
Article published online:
09 August 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. RadioGraphics 2004; 24: 1679-1691 DOI: 10.1148/rg.246045065. (PMID: 15537976)
- 2 Katsura M, Sato J, Akahane M. et al. Current and Novel Techniques for Metal Artifact Reduction at CT: Practical Guide for Radiologists. RadioGraphics 2018; 38: 450-461 DOI: 10.1148/rg.2018170102. (PMID: 29528826)
- 3 Kachelrieß M, Krauss A. White Paper_Iterative Metal Artifact Reduction (iMAR): Technical Principles and Clinical Results in Radiation Therapy. https://cdn0.scrvt.com/39b415fb07de4d9656c7b516d8e2d907/1800000004904518/83085a287878/RO_Internet_Whitepaper_iMAR_1800000004904518.pdf
- 4 Higashigaito K, Angst F, Runge VM. et al. Metal Artifact Reduction in Pelvic Computed Tomography With Hip Prostheses: Comparison of Virtual Monoenergetic Extrapolations From Dual-Energy Computed Tomography and an Iterative Metal Artifact Reduction Algorithm in a Phantom Study. Investigative Radiology 2015; 50: 828-834 DOI: 10.1097/RLI.0000000000000191.
- 5 Mohammadinejad P, Baffour FI, Adkins MC. et al. Benefits of iterative metal artifact reduction and dual-energy CT towards mitigating artifact in the setting of total shoulder prostheses. Skeletal Radiol 2021; 50: 51-58 DOI: 10.1007/s00256-020-03528-3. (PMID: 32601733)
- 6 Subhas N, Primak AN, Obuchowski NA. et al. Iterative metal artifact reduction: evaluation and optimization of technique. Skeletal Radiol 2014; 43: 1729-1735 DOI: 10.1007/s00256-014-1987-2. (PMID: 25172218)
- 7 Subhas N, Polster JM, Obuchowski NA. et al. Imaging of Arthroplasties: Improved Image Quality and Lesion Detection With Iterative Metal Artifact Reduction, a New CT Metal Artifact Reduction Technique. American Journal of Roentgenology 2016; 207: 378-385 DOI: 10.2214/AJR.15.15850. (PMID: 27186794)
- 8 Weiß J, Schabel C, Bongers M. et al. Impact of iterative metal artifact reduction on diagnostic image quality in patients with dental hardware. Acta Radiologica 2016; 58: 279-285 DOI: 10.1177/0284185116646144. (PMID: 27166346)
- 9 Martin O, Aissa J, Boos J. et al. Impact of different metal artifact reduction techniques on attenuation correction in 18F- FDG PeT CT examinations. Br J Radiol 2020; 93: 20190069 DOI: 10.1259/bjr.20190069. (PMID: 31642702)
- 10 Reinert CP, La Fougere C, Nikolaou K. et al. Value of CT iterative metal artifact reduction in PeT CT – clinical evaluation in 100 patients. Br J Radiol 2019; 92 DOI: 10.1259/bjr.20180756. (PMID: 30618270)
- 11 van der Vos CS, Arens AIJ, Hamill JJ. et al. Metal Artifact Reduction of CT Scans to Improve PET/CT. J Nucl Med 2017; 58: 1867-1872 DOI: 10.2967/jnumed.117.191171.
- 12 Ritt P, Vija H, Hornegger J. et al. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging 2011; 38: 69-77 DOI: 10.1007/s00259-011-1770-8. (PMID: 21484383)
- 13 Schmidkonz C, Atzinger A, Goetz TI. et al. 99mTc-MIP-1404 SPECT/CT for Patients With Metastatic Prostate Cancer: Interobserver and Intraobserver Variability in Treatment-Related Longitudinal Tracer Uptake Assessments of Prostate-Specific Membrane Antigen-Positive Lesions. Clinical nuclear medicine 2020; 45: 105-112 DOI: 10.1097/RLU.0000000000002880. (PMID: 31876822)
- 14 Schmidkonz C, Götz TI, Atzinger A. et al. 99mTc-MIP-1404 SPECT/CT for Assessment of Whole-Body Tumor Burden and Treatment Response in Patients With Biochemical Recurrence of Prostate Cancer. Clinical nuclear medicine 2020; 45: e349-e357 DOI: 10.1097/RLU.0000000000003102. (PMID: 32558706)
- 15 Welz F, Sanders JC, Kuwert T. et al. Absolute SPECT/CT quantification of cerebral uptake of 99mTc-HMPAO for patients with neurocognitive disorders. Nuklearmedizin. Nuclear medicine 2016; 55: 158-165 DOI: 10.3413/Nukmed-0765-15-09. (PMID: 26690261)
- 16 Konishi T, Shibutani T, Okuda K. et al. Metal artifact reduction for improving quantitative SPECT/CT imaging. Ann Nucl Med 2021; 35: 291-298 DOI: 10.1007/s12149-020-01560-w. (PMID: 33460009)
- 17 Kuwert T. Skeletal SPECT/CT: a review. Clinical and Translational Imaging 2014; 2: 505-517 DOI: 10.1007/s40336-014-0090-y.
- 18 Söderberg M. OVERVIEW, PRACTICAL TIPS AND POTENTIAL PITFALLS OF USING AUTOMATIC EXPOSURE CONTROL IN CT: SIEMENS CARE DOSE 4D. Radiat Prot Dosimetry 2016; 169: 84-91 DOI: 10.1093/rpd/ncv459. (PMID: 26567324)
- 19 Vija AH, von Gall C, Ghosh P. White Paper_Accurate, reproducible, and standardized quantification . https://cdn0.scrvt.com/39b415fb07de4d9656c7b516d8e2d907/1800000004691530/f7401b228654/MI-3610_xSPECT_QUANT_WP.FINAL_1800000004691530.pdf
- 20 Ghosh P. White Paper_xSPECT Bone: a clinical overview. https://cdn0.scrvt.com/39b415fb07de4d9656c7b516d8e2d907/1800000005347954/7a1d7bde2a9d/_xSPECT_BONE_whitepaper_1800000005347954.pdf
- 21 Schabel C, Gatidis S, Bongers M. et al. Improving CT-Based PET Attenuation Correction in the Vicinity of Metal Implants by an Iterative Metal Artifact Reduction Algorithm of CT Data and Its Comparison to Dual-Energy-Based Strategies: A Phantom Study. Investigative Radiology 2017; 52: 61-65 DOI: 10.1097/RLI.0000000000000306. (PMID: 27416330)
- 22 Haemels M, Vandendriessche D, de Geeter J. et al. Quantitative Effect of Metal Artefact Reduction on CT-based attenuation correction in FDG PET/CT in patients with hip prosthesis. EJNMMI Physics 2021; 8: 67 DOI: 10.1186/s40658-021-00414-2. (PMID: 34626242)
- 23 der Bruggen W, Hirschmann MT, Strobel K. et al. SPECT/CT in the Postoperative Painful Knee. Seminars in Nuclear Medicine 2018; 48: 439-453 DOI: 10.1053/j.semnuclmed.2018.05.003. (PMID: 30193650)
- 24 Sumer J, Schmidt D, Ritt P. et al. SPECT/CT in patients with lower back pain after lumbar fusion surgery. Nuclear Medicine Communications 2013; 34 DOI: 10.1097/MNM.0b013e328363cf81. (PMID: 23820764)