Synlett 2022; 33(18): 1847-1852 DOI: 10.1055/a-1863-8957
cluster
Development and Applications of Novel Ligands/Catalysts and Mechanistic Studies on Catalysis
8-Quinolinyl Oxazoline: Ligand Exploration in Enantioselective Ni-Catalyzed Reductive Carbamoyl-Alkylation of Alkene to Access the Chiral Oxindoles
Baixue Luan
,
Zaiquan Tang
,
Xianqing Wu∗
,
This work was sponsored by the National Natural Science Foundation of China (22171079), the Natural Science Foundation of Shanghai (21ZR1480400), the Shanghai Rising-Star Program (20QA1402300), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX03), the Program of Introducing Talents of Discipline to Universities, Project 211 (B16017), the Fundamental Research Funds for the Central Universities (222201717003), and the China Postdoctoral Science Foundation (2021M701197).
Abstract
Chiral ligands play an essential role in transition-metal-catalyzed enantioselective transformations, in which chiral oxazoline-based scaffolds are the privileged chiral ligand. Nevertheless, 8-quinolinyl oxazoline (8-Quinox) ligands are underexplored in transition-metal-catalyzed asymmetric transformations since their development in 1998. Herein, we report an 8-Quinox ligand promoted Ni-catalyzed enantioselective reductive carbamoyl-alkylation of carbamoyl chloride tethered styrene with unactivated alkyl iodide, providing an expedient access to valuable enantioenriched oxindoles in good results.
Key words
chiral ligand -
nickel catalysis -
reductive coupling -
dicarbofunctionalization of alkene -
oxindole
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1863-8957.
Supporting Information
Publication History
Received: 24 April 2022
Accepted after revision: 30 May 2022
Accepted Manuscript online: 30 May 2022
Article published online: 08 July 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References and Notes
1a
Feng J,
Holmes M,
Krische MJ.
Chem. Rev. 2017; 117: 12564
1b
Süsse L,
Stoltz BM.
Chem. Rev. 2021; 121: 4084
2 For a selected book, see:
Privileged Chiral Ligands and Catalysts
.
Zhou Q.-L.
Wiley-VCH; Weinheim: 2011
3a
Hargaden GC,
Guiry PJ.
Chem. Rev. 2009; 109: 2505
3b
Carroll MP,
Guiry PJ.
Chem. Soc. Rev. 2014; 43: 819
3c
Yang G,
Zhang W.
Chem. Soc. Rev. 2018; 47: 1783
3d
Connon R,
Roche B,
Rokade BV,
Guiry PJ.
Chem. Rev. 2021; 121: 6373
4a
Brunner H,
Obermann U,
Wimmer P.
J. Organomet. Chem. 1986; 316: C1
4b
Brunner H,
Obermann U,
Wimmer P.
Organometallics 1989; 8: 821
For selected examples, see:
5a
Werner EW,
Mei TS,
Burckle AJ,
Sigman MS.
Science 2012; 338: 1455
5b
Mei TS,
Werner EW,
Burckle AJ,
Sigman MS.
J. Am. Chem. Soc. 2013; 135: 6830
5c
Mei TS,
Patel HH,
Sigman MS.
Nature 2014; 508: 340
5d
Patel HH,
Sigman MS.
J. Am. Chem. Soc. 2015; 137: 346
5e
Bahamonde A,
Al Rifaie B,
Martín-Heras V,
Allen JR,
Sigman MS.
J. Am. Chem. Soc. 2019; 141: 8708
5f
Liu J,
Yuan Q,
Toste FD,
Sigman MS.
Nat. Chem. 2019; 11: 710
5g
Ross SP,
Rahman AA,
Sigman MS.
J. Am. Chem. Soc. 2020; 142: 10516
6
Nishiyama H,
Sakaguchi H,
Nakamura T,
Horihata M,
Kondo M,
Itoh K.
Organometallics 1989; 8: 846
7a
Zhang L,
Zuo Z.-Q,
Wan X.-L,
Huang Z.
J. Am. Chem. Soc. 2014; 136: 15501
7b
Chen J,
Xi T,
Lu Z.
Org. Lett. 2014; 16: 6452
8
Babu SA,
Krishnan KK,
Ujwaldev SM,
Anilkumar G.
Asian J. Org. Chem. 2018; 7: 1033
9
Chen J,
Xi T,
Lu Z.
Org. Chem. Front. 2018; 5: 247 ; and the references therein
10a
Wu X.-Y,
Li X.-H,
Zhou Q.-L.
Tetrahedron: Asymmetry 1998; 9: 4143
10b
Wu X.-Y,
Xu H.-D,
Zhou Q.-L,
Chan AS. C.
Tetrahedron: Asymmetry 2000; 11: 1255
10c
Li X.-G,
Cheng X,
Ma J.-A,
Zhou Q.-L.
J. Organomet. Chem. 2001; 640: 65
10d
Wu X.-Y,
Xu H.-D,
Tang F.-Y,
Zhou Q.-L.
Tetrahedron: Asymmetry 2001; 12: 2565
10e
Li Z.-P,
Wu X.-Y,
Zhou Q.-L,
Chan W.-L.
Chin. J. Chem. 2001; 19: 40
10f
Zhou Y.-B,
Tang F.-Y,
Xu H.-D,
Wu X.-Y,
Ma J.-A,
Zhou Q.-L.
Tetrahedron: Asymmetry 2002; 13: 469
11a
Lu P,
Ren X,
Xu H,
Lu D,
Sun Y,
Lu Z.
J. Am. Chem. Soc. 2021; 143: 12433
11b
Ren X,
Lu Z.
Org. Lett. 2021; 23: 8370
For selected reviews and examples, see:
12a
Singh GS,
Desta ZY.
Chem. Rev. 2012; 112: 6104
12b
Galliford CV,
Scheidt KA.
Angew. Chem. Int. Ed. 2007; 46: 8748
12c
Trost BM,
Brennan MK.
Synthesis 2009; 18: 3003
12d
Huters AD,
Styduhar ED,
Garg NK.
Angew. Chem. Int. Ed. 2012; 51: 3758
12e
Kato H,
Yoshida T,
Tokue T,
Nojiri Y,
Hirota H,
Ohta T,
Williams RM,
Tsukamoto S,
Notoamides A.-D.
Angew. Chem. Int. Ed. 2007; 46: 2254
For selected reviews and examples, see:
13a
Cao Z.-Y,
Zhou F,
Zhou J.
Acc. Chem. Res. 2018; 51: 1443
13b
Ping Y,
Li Y,
Zhu J,
Kong W.
Angew. Chem. Int. Ed. 2019; 58: 1562
13c
Marchese AD,
Larin EM,
Mirabi B,
Lautens M.
Acc. Chem. Res. 2020; 53: 1605
13d
Hu HZ,
Teng F,
Liu J,
Hu WM,
Luo S,
Zhu Q.
Angew. Chem. Int. Ed. 2019; 58: 9225
13e
Bai X,
Wu C,
Ge S,
Lu Y.
Angew. Chem. Int. Ed. 2020; 59: 2764
For selected reviews and examples, see:
14a
Wang K,
Ding Z,
Zhou Z,
Kong W.
J. Am. Chem. Soc. 2018; 140: 12364
14b
Jin Y,
Wang C.
Angew. Chem. Int. Ed. 2019; 58: 6722
14c
Tian Z.-X,
Qiao J.-B,
Xu G.-L,
Pang X,
Qi L,
Ma W.-Y,
Zhao Z.-Z,
Duan J,
Du Y.-F,
Su P,
Liu X.-Y,
Shu X.-Z.
J. Am. Chem. Soc. 2019; 141: 7637
14d
Peng Y,
Wang K,
Pan Q,
Ding Z,
Zhou Z,
Guo Y,
Kong W.
ACS Catal. 2019; 9: 7335
14e
Li Y,
Ding Z,
Lei A,
Kong W.
Org. Chem. Front. 2019; 6: 3305
14f
Ma T,
Chen Y,
Li Y,
Ping Y,
Kong W.
ACS Catal. 2019; 9: 9127
14g
Jin Y,
Yang H,
Wang C.
Org. Lett. 2019; 21: 7602
14h
Jin Y,
Wang C.
Chem. Sci. 2019; 10: 1780
14i
He J,
Xue Y,
Han B,
Zhang C,
Wang Y,
Zhu S.
Angew. Chem. Int. Ed. 2020; 59: 2328
14j
Fan P,
Lan Y,
Zhang C,
Wang C.
J. Am. Chem. Soc. 2020; 142: 2180
14k
Chen X.-W,
Yue J.-P,
Wang K,
Gui Y.-Y,
Niu Y.-N,
Liu J,
Ran C.-K,
Kong W,
Zhou W.-J,
Yu D.-G.
Angew. Chem. Int. Ed. 2021; 60: 14068
14l
Qiao J.-B,
Zhang Y.-Q,
Yao Q.-W,
Zhao Z.-Z,
Peng X,
Shu X.-Z.
J. Am. Chem. Soc. 2021; 143: 12961
14m
Wu J,
Wang C.
Org. Lett. 2021; 23: 6407
15
Lan Y,
Wang C.
Commun. Chem. 2020; 3: 45
16a
Wu X,
Qu J,
Chen Y.
J. Am. Chem. Soc. 2020; 142: 15654
16b
Wu X,
Luan B,
Zhao W,
He F,
Wu X.-Y,
Qu J,
Chen Y.
Angew. Chem. Int. Ed. 2022; in press
16c
Wu X,
Shrestha M,
Chen Y.
Synlett 2021; 32: 955
16d
He Y,
Zhu S.
Chin. J. Org. Chem. 2020; 40: 4377
16e
Shrestha M,
Wu X,
Huang W,
Qu J,
Chen Y.
Org. Chem. Front. 2021; 8: 4024
17a
Fang K,
Huang W,
Shan C,
Qu J,
Chen Y.
Org. Lett. 2021; 23: 5523
17b
Huang W,
Shrestha M,
Wang C,
Fang K,
Teng Y,
Qu J,
Chen Y.
Org. Chem. Front. 2021; 8: 4106
17c
Xi Y,
Wang C,
Zhang Q,
Qu J,
Chen Y.
Angew. Chem. Int. Ed. 2021; 60: 2699
18
General Procedure
To a dried 8 mL vial were added ligand (22 mol%), Mn (2.0 equiv), Ni(ClO4 )2
· 6H2 O (15 mol%), and carbamoyl chloride (1.0 equiv) (if solid). Then the vial was transferred into glovebox. LiBr (1.0 equiv), NMP (0.2 M), carbamoyl chloride (1.0 equiv) (if liquid), and alkyl halide (3.0 equiv) were added in sequence inside the glovebox. The vial was then put into the glovebox and stirred for the needed time. After completion, the reaction mixture was quenched with H2 O, filtered through a pad of Celite, and extracted with EtOAc for three times. The resulted filtrate was separated. The combined organic phase was washed with brine and concentrated under reduced pressure to yield the crude product, which was purified by silica gel flash column chromatography to afford products 3 .
(S )-1,3-Dimethyl-3-octylindolin-2-one (3a)
Pale yellow oil (31.6 mg, 58%); Rf
= 0.56 (PE/EtOAc = 10:1); [α]D
23 + 7.90 (c = 1.67, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 7.26 (td, J = 8.0, 1.2 Hz, 1 H), 7.16 (dd, J = 7.2, 0.8 Hz, 1 H), 7.06 (td, J = 7.6, 0.8 Hz, 1 H), 6.84 (d, J = 7.6 Hz, 1 H), 3.21 (s, 3 H), 1.88 (td, J = 12.4, 4.8 Hz, 1 H), 1.71 (td, J = 12.4, 4.4 Hz, 1 H), 1.34 (s, 3 H), 1.25–1.14 (m, 10 H), 1.00–0.77 (m, 5 H). 13 C NMR (100 MHz, CDCl3 ): δ = 181.0, 143.5, 134.5, 127.7, 122.6, 122.5, 108.0, 48.6, 38.7, 31.9, 29.9, 29.4, 29.3, 26.2, 24.6, 23.9, 22.7, 14.2. HRMS (ESI): m/z calcd for C18 H28 NO+ : 274.2165; found: 274.2157. HPLC (Chiralpak IC): n -hexane/i -PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm, t
R = 6.551 min (major), t
R = 8.110 min (minor); 96:4 e.r.
(S )-1-Benzyl-3-methyl-3-octylindolin-2-one (3b)
Pale yellow oil (38.1 mg, 55%); Rf
= 0.77 (PE/EtOAc = 10:1); [α]D
23 + 10.30 (c = 0.66, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 7.29–7.23 (m, 5 H), 7.12 (dd, J = 16.8, 7.8 Hz, 2 H), 7.00 (t, J = 7.2 Hz, 1 H), 6.69 (d, J = 7.6 Hz, 1 H), 4.97 (d, J = 15.6 Hz, 1 H), 4.82 (d, J = 15.6 Hz, 1 H), 1.93 (td, J = 12.0, 2.8 Hz, 1 H), 1.74 (td, J = 12.8, 3.2 Hz, 1 H), 1.38 (s, 3 H), 1.23–1.13 (m, 12 H), 0.82 (t, J = 7.2 Hz, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 181.1, 142.5, 136.3, 134.4, 128.8, 127.6, 127.4, 122.7, 122.5, 109.1, 48.6, 43.7, 38.7, 31.9, 29.9, 29.4, 29.3, 24.8, 24.3, 22.7, 14.2. HRMS (ESI): m/z calcd for C24 H32 NO+ : 350.2478; found: 350.2470. HPLC (Chiralpak IC): n -hexane/i -PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm, t
R = 5.739 min (major), t
R = 6.239 min (minor); 95.5:4.5 e.r.
(S )-1,3-Dimethyl-3-octyl-6-(trifluoromethyl)indolin-2-one (3c)
Pale yellow oil (30.7 mg, 45%); Rf
= 0.65 (PE/EtOAc = 10:1); [α]D
23 + 13.76 (c = 2.95, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 7.27 (d, J = 7.2 Hz, 1 H), 7.18 (d, J = 7.6 Hz, 1 H), 6.96 (s, 1 H), 3.17 (s, 3 H), 1.83 (td, J = 12.0, 3.2 Hz, 1 H), 1.66 (td, J = 12.0, 3.6 Hz, 1 H), 1.28 (s, 3 H), 1.17–1.07 (m, 12 H), 0.76 (t, J = 6.4 Hz, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 180.6, 144.1, 138.4, 130.2 (q, J
C–F = 32.3 Hz), 124.1 (q, J
C–F = 270.2 Hz), 122.7, 119.6 (q, J
C–F = 3.8 Hz), 104.6 (q, J
C–F = 3.7 Hz), 48.7, 38.5, 31.9, 29.8, 29.3, 29.3, 26.4, 24.6, 23.7, 22.7, 14.2. 19 F NMR (376 MHz, CDCl3 ): δ = –62.3; HRMS (ESI): m/z calcd for C19 H27 F3 NO+ : 342.2039; found: 342.2030. HPLC (Chiralpak IC): n -hexane/i -PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm, t
R = 4.627 min (major), t
R = 5.098 min (minor); 95.5:4.5 e.r.
(
S
)-1,3-Dimethyl-3-propylindolin-2-one (3d)
Pale yellow oil (29.7 mg, 73%); Rf
= 0.42 (PE/EtOAc = 10:1); [α]D
23 +15.04 (c = 2.78, CHCl3 ). 1 H NMR (400 MHz, CDCl3 ): δ = 7.26 (t, J = 8.0 Hz, 1 H), 7.17 (d, J = 7.2 Hz, 1 H), 7.06 (t, J = 7.6 Hz, 1 H), 6.83 (d, J = 7.2 Hz, 1 H), 3.21 (s, 3 H), 1.88 (td, J = 12.4, 4.4 Hz, 1 H), 1.70 (td, J = 12.0, 4.0 Hz, 1 H), 1.35 (s, 3 H), 1.05–0.96 (m, 1 H), 0.90–0.83 (m, 1 H), 0.77 (t, J = 7.2 Hz, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 181.0, 143.4, 134.4, 127.7, 122.6, 122.5, 107.9, 48.6, 40.9, 26.2, 23.8, 17.9, 14.3. HRMS (ESI): m/z calcd for C13 H18 NO+ : 204.1383; found: 204.1378.
HPLC (Chiralpak IC): n -hexane/i -PrOH = 90:10, flow rate 1.0 mL/min, λ = 254 nm, t
R = 7.967 min (major), t
R = 8.377 min (minor); 91.5:8.5 e.r.