Drug Res (Stuttg) 2023; 73(03): 175-183
DOI: 10.1055/a-1855-1412
Original Article

Biological Activity of a 4-Hydroxy-Furanyl-Benzamide Derivative on Heart Failure

Figueroa-Valverde Lauro
1   Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Campeche, México
,
Rosas-Nexticapa Marcela
2   Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n, Unidad del Bosque, Veracruz, México
,
López-Ramos Maria
1   Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Campeche, México
,
Alvarez-Ramirez Magdalena
2   Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n, Unidad del Bosque, Veracruz, México
,
Mateu-Armad Maria Virginia
2   Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n, Unidad del Bosque, Veracruz, México
,
Díaz-Cedillo Francisco
3   Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Prol, Santo Tomas, México
,
Cervantes-Ortega Catalina
2   Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n, Unidad del Bosque, Veracruz, México
,
Melgarejo-Guutierrez Montserrat
4   Facultad de Medicina Universidad Veracruzana, Médicos y Odontologos s/n, Unidad del Bosque, Veracruz, México
› Author Affiliations

Abstract

Background There are studies that suggest that some benzamide derivatives may exert effects on heart failure; however, their molecular mechanism is not very clear.

Objective The aim of this research was to evaluate the biological activity of a 4-hydroxy-furanyl-benzamide derivative against heart failure translated as area infarct.

Methods Biological activity produced by 4-hydroxy-furanyl-benzamide derivative against heart failure was determinate using an ischemia-reperfusion injury model. In addition, the effects exerted by the 4-hydroxy-furanyl-benzamide derivative on left ventricular pressure (LVP) was evaluated in the absence or presence of some drugs such as yohimbine, butaxamine, methoctramine and L-NAME using a model of rat heart isolated.

Results The results showed that 4-hydroxy-furanyl-benzamide derivative decrease both infarct area and LVP. However, the effect produced by 4-hydroxy-furanyl-benzamide derivative on LVP was inhibited in the presence of both methoctramine and L-NAME.

Conclusions All these data suggest that biological activity produced by 4-hydroxy-furanyl-benzamide derivative on left ventricular pressure is through of both M2-muscarinic receptor and nitric oxide synthase enzyme activation. It is important to mention that this phenomenon results as a decrease of both infarct area and heart failure.



Publication History

Received: 19 April 2022

Accepted: 16 May 2022

Article published online:
23 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Groenewegen A, Rutten F, Mosterd A. et al. Epidemiology of heart failure. Eur J Heart Fail 2020; 22: 1342-1356
  • 2 Vaduganathan M, Claggett B, Jhund P. et al. Estimating lifetime benefits of comprehensive disease-modifying pharmacological therapies in patients with heart failure with reduced ejection fraction: a comparative analysis of three randomised controlled trials. The Lancet 2020; 10244: 121-128
  • 3 Murphy S, Ibrahim N, Januzzi J. Heart failure with reduced ejection fraction: a review. J Am Med Assoc 2020; 324: 488-504
  • 4 Stanek E, Oates M, McGhan W. et al. Preferences for treatment outcomes in patients with heart failure: symptoms versus survival. J Cardiac Fail 2000; 6: 225-232
  • 5 Van-Riet E, Hoes A, Limburg A. et al. Prevalence of unrecognized heart failure in older persons with shortness of breath on exertion. Eur J Heart Fail 2014; 16: 772-777
  • 6 Merrill A. Edema and decreased renal blood flow in patients with chronic congestive heart failure: evidence of “forward failure” as the primary cause of edema. J Clin Invest 1946; 25: 389-400
  • 7 Mentz R, Kjeldsen K, Rossi G. et al. Decongestion in acute heart failure. Eur J Heart Fail 2014; 16: 471-482
  • 8 Stanek E, Oates M, McGhan W. et al. Preferences for treatment outcomes in patients with heart failure: symptoms versus survival. J Cardiac Fail 2000; 6: 225-232
  • 9 Kemp C, Conte J. The pathophysiology of heart failure. Cardiovas Pathol 2012; 21: 365-371
  • 10 Cohn J, Johnson G, Ziesche S. et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991; 325: 303-310
  • 11 Colucci W, Elkayam U, Horton D. et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. N Engl J Med 2000; 343: 246-253
  • 12 Cohn J, Hawkins M, Levine H. et al. Captopril-Digoxin Multicenter Research Group, Comparative effects of therapy with captopril and digoxin in patients with mild to moderate heart failure. J Am Med Assoc 1988; 259: 539-544
  • 13 Pitt B, Pfeffer M, Assmann S. et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 2014; 370: 1383-1392
  • 14 Cuffe M, Califf R, Adams K. et al. Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. J Am Med Assoc 2022; 287: 1541-1547
  • 15 Kates R, Leier C. Dobutamine pharmacokinetics in severe heart failure, Clin Pharmacol. Ther 24 1978; 537-541
  • 16 Zairis M, Apostolatos C, Anastassiadis F. et al. 273 Comparison of the effect of levosimendan, or dobutamin or placebo in chronic low output decompensated heart failure. Calcium sensitizer or inotrope or none in low output heart failure (CASINO) study. Eur J Heart Fail 2004; 3: 66
  • 17 Kostis J, Shelton B, Gosselin G. et al. Adverse effects of enalapril in the Studies of Left Ventricular Dysfunction (SOLVD). Am Heart J 1996; 131: 350-355
  • 18 Greenblatt D, Koch J. Adverse reactions to spironolactone: a report from the Boston collaborative drug surveillance program. J Am Med Assoc 1973; 225: 40-43
  • 19 Zimmer C, Hafner M, Zender M. et al. N-(Pyridin-3-yl) benzamides as selective inhibitors of human aldosterone synthase (CYP11B2). Bioorg Med Chem Lett 2011; 21: 186-190
  • 20 Cheung M, Bao W, Behm D. et al. Discovery of GSK2193874: an orally active, potent, and selective blocker of transient receptor potential vanilloid 4. Med Chem Lett 2017; 8: 549-554
  • 21 Chambers L, Dorrance A. Regulation of ion channels in the microcirculation by mineralocorticoid receptor activation. Current Topics Mem 2020; 85: 151-185
  • 22 Xing Y, Niu T, Wang W. et al. Triterpenoid dihydro-CDDO-trifluoroethyl amide protects against maladaptive cardiac remodeling and dysfunction in mice: a critical role of Nrf2. Plos One 2012; 7: 1-8
  • 23 Olsson R, Jacobson I, Boström J. et al. Synthesis and evaluation of diphenylphosphinic amides and diphenylphosphine oxides as inhibitors of Kv1. Bioorg Med Chem Lett 2013; 23: 706-710
  • 24 Kuramochi T, Kakefuda A, Yamada H. et al. Synthesis and structure–activity relationships of benzyloxyphenyl derivatives as a novel class of NCX inhibitors: effects on heart failure. Bioorg Med Chem 2005; 13: 725-734
  • 25 Figueroa-Valverde L, Diaz-Cedillo F, Rosas-Nexticapa M. et al. Synthesis of two indomethacin-dimers with biological activity on heart failure. Vietnam J Chem 2022; 60: 37-48
  • 26 Clark J, Gebhart G, Gonder J. et al. The 1996 guide for the care and use of laboratory animals. Inst Lab Animal Res J. 1997; 38: 41-48
  • 27 Rosas-Nexticapa M, Figueroa-Valverde L, Diaz-Cedillo F. et al. Synthesis and evaluation of biological activity from two steroid-diazacyclododecin derivatives on left ventricular pressure. Bioin Res App Chem 2018; 3306-3313
  • 28 Figueroa-Valverde L, Diaz-Cedillo F, García-Cervera E. et al. Positive inotropic activity induced by a dehydroisoandrosterone derivative in isolated rat heart model. Arch Pharm Res 2013; 36: 1270-1278
  • 29 Millar N. Biology statistics made simple using Excel. School Sci Rev 2001; 83: 23-34
  • 30 Tusun X, Lu C. Dirhodium Caprolactamate Catalyzed Alkoxyalkylation of Terminal Alkynes. Synlett 2013; 24: 1693-1696
  • 31 Chen L, Yang J, Li L. et al. Cobalt-catalyzed direct C–C bond formation between tetrahydrofuran and alkynes. Tetrahedron Lett 2014; 55: 6096-6100
  • 32 Zhao J, Hua HL, Wang G. et al. H2O2–Promoted Alkoxyalkylation of Terminal Alkynes Employing Two Strategies with Transition-Metal-Free. Asian J Org Chem 2022; DOI: 10.1002/ajoc.202100726.
  • 33 Benfenati E, Fanelli R, Bosone E. et al. Mass spectrometric identification of urinary and plasma metabolites of 6-(6’-carboxyhexyl)-7-n-hexyl-1,3-diazaspiro-[4-4]-nonan-2,4-dione, a new cytoprotective agent. Drug Met Disp 1991; 19: 913-916
  • 34 Yates P, Hoare J. Synthesis of piperazine2,5-diones related to bicyclomycin: 1,4-dibenzyl3-hydroxy-3-[1-(2- methoxyethyl)ethenyl]piperazine-2,5-dione. 2. Route via cyclic intermediates. Canadian J Chem 1983; 61: 1397-1404
  • 35 Farag A, Elkholy Y, Ali K. Regioselective synthesis of diazaspiro[4.4]nona and tetrazaspiro[4.5]deca, 9 dene, 6 one derivatives. J Heter Chem 2008; 45: 279-283
  • 36 Islam M, Barakat A, Al-Majid A. et al. Stereoselective synthesis of diazaspiro [5.5] undecane derivatives via base promoted [5+1] double Michael addition of N,N-dimethylbarbituric acid to diaryliedene acetones. Arabian J Chem 2017; 10: 1-9
  • 37 Smetanin I, Novikov M, Rostovskii N. et al. 4-Halo-2-azabuta-1, 3- dienes as Intermediates in the rhodium carbenoid-initiated transformation of 2-halo-2H-azirines into 2, 3- dihydroazetes and 2, 5-dihydrooxazoles. Tetrahedron 2015; 71: 4616-4628
  • 38 Rees C, Storr R. Interconversions of some nitrogen-containing heterocyclic systems. Chem Heter Comp 1974; 10: 629-639
  • 39 Gensler W. Investigation of the Compound Described as Azacyclobutadiene. J Am Chem Soc 1974; 69: 1966-1968
  • 40 Pennings M, Okay G, Reinhoudt D. et al. Chemistry of four-membered cyclic nitrones. 2. 1, 3-Dipolar cycloaddition reactions with electron-deficient acetylenes and conversion of the 1, 3-dipolar adducts into pyridine derivatives. J Org Chem 1982; 47: 4413-4418
  • 41 Figueroa-Valverde L, Alvarez-Ramirez M, Rosas-Nexticapa M. et al. Synthesis of Two Testosterone Derivatives and their Theoretical Evaluation as Serotonin Reuptake Transporter Inhibitors. Biointerface Res Appl Chem 2021; 11: 12462-12470
  • 42 Figueroa-Valverde L, Díaz-Cedillo F, Rosas-Nexticapa M. et al. Design and Synthesis of Two Azete Derivatives Using some Chemical Strategies 2022; 12: 5567-5578
  • 43 Marcela R, Lauro F, Francisco D. et al. Activity exerted by a benzamide derivative on injury by ischemia/reperfusion in an isolated heart model. African J Pharm Pharmacol 2013; 7: 2866-2875
  • 44 Shtacher G, Erez M, Cohen S. Selectivity in new. beta.-adrenergic blocking agents.(3-Amino-2-hydroxypropoxy) benzamides. J Med Chem 1973; 16: 516-519
  • 45 Kitagawa Y, Tamura Y, Shimizu J. et al. Effects of a novel histone deacetylase inhibitor, N-(2-aminophenyl) benzamide, on a reversible hypertrophy induced by isoproterenol in in situ rat hearts. J Pharmacol Sci 2007; 1: 167-175
  • 46 Hemmeryckx B, Feng Y, Frederix L. et al. Evaluation of cardiac arrhythmic risks using a rabbit model of left ventricular systolic dysfunction. Eur J Pharmacol 2018; 832: 145-155
  • 47 Ja kubowski A, Lomnicka M. A poly (ADP-ribose) synthetase inhibitor, benzamide protects smooth muscle cells but not endothelium against ischemia/reperfusion injury in isolated guinea-pig heart. Acta Biochim Pol 2007; 54: 199-204
  • 48 Gumina R, Daemmgen J, Gross G. Inhibition of the Na+/H+exchanger attenuates phase 1b ischemic arrhythmias and reperfusion-induced ventricular fibrillation. Eur J Pharmacol 2000; 396: 119-124
  • 49 Gorain B, Dutta S, Nandy U. et al. Pharmacology of Adrenaline, Noradrenaline, and Their Receptors. Frontiers Pharmacol Neurotransm 2020; 107-142
  • 50 Aggarwal A, Esler M, Socratous F. et al. Evidence for functional presynaptic alpha-2 adrenoceptors and their down-regulation in human heart failure. J Am Coll Cardiol 2001; 37: 1246-1251
  • 51 Shimokawa T, Yoneda K, Yamagata M. et al. Yohimbine ameliorates lipopolysaccharide-induced acute kidney injury in rats. Eur J Pharmacol 2020; 871: 172917
  • 52 Quinn T. Ventricular tachycardia-like complexes in acute myocardial infarction. Chest 1985; 88: 644
  • 53 Kumar A, Joshi A, Starling S. β-Blockers: a systematic review. J Chem 2011; 3: 32-47
  • 54 Wilkinson M, Giles A, Armour J. et al. Ventricular, but not atrial, M2- muscarinic receptors increase in the canine pacing-overdrive model of heart failure. Canadian J Cardiol 1996; 12: 71-76
  • 55 Sterin-Borda L, Echagüe A, Leiros CP. et al. Endogenous nitric oxide signalling system and the cardiac muscarinic acetylcholine receptor-inotropic response. British J Pharmacol 1995; 115: 1525-15
  • 56 Turner C, Takano Y, Owan I. et al. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol Endocrinol Metab 1996; 270: E634-E639