Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00033104.xml
Die Wirbelsäule 2022; 06(04): 225-232
DOI: 10.1055/a-1837-3907
DOI: 10.1055/a-1837-3907
Übersicht
Einsatz innovativer Technologien in der Chirurgie spinaler Metastasen
Innovative technologies in spinal metastasis surgerySchlüsselwörter
Spinale Metastasen - Spondylodese - Navigation - Artefakt-reduzierte Osteosynthese - Robotik - minimalinvasivKeywords
spinal metastases - spinal instrumentation - navigation - artifact-reduced osteosynthesis - robotics - minimally invasivePublication History
Article published online:
14 November 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Laufer I, Bilsky MH. Advances in the treatment of metastatic spine tumors: the future is not what it used to be. Journal of neurosurgery Spine 2019; 30: 299-307 DOI: 10.3171/2018.11.spine18709. (PMID: 30835704)
- 2 Barzilai O, Fisher CG, Bilsky MH. State of the Art Treatment of Spinal Metastatic Disease. Neurosurgery 2018; 82: 757-769 DOI: 10.1093/neuros/nyx567. (PMID: 29481645)
- 3 Wagner A, Haag E, Joerger AK. et al. Comprehensive surgical treatment strategy for spinal metastases. Scientific reports 2021; 11: 7988 DOI: 10.1038/s41598-021-87121-1. (PMID: 33846484)
- 4 Patchell RA, Tibbs PA, Regine WF. et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 2005; 366: 643-648 DOI: 10.1016/s0140-6736(05)66954-1. (PMID: 16112300)
- 5 Amelot A, Balabaud L, Choi D. et al. Surgery for metastatic spine tumors in the elderly. Advanced age is not a contraindication to surgery!. The Spine Journal 2017; 17: 759-767 DOI: 10.1016/j.spinee.2015.07.440. (PMID: 26239762)
- 6 Pranata R, Lim MA, Vania R. et al. Minimal Invasive Surgery Instrumented Fusion versus Conventional Open Surgical Instrumented Fusion for the Treatment of Spinal Metastases: A Systematic Review and Meta-analysis. World neurosurgery 2021; 148: e264-e274 DOI: 10.1016/j.wneu.2020.12.130. (PMID: 33418123)
- 7 Laufer I, Rubin DG, Lis E. et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. The oncologist 2013; 18: 744-751 DOI: 10.1634/theoncologist.2012-0293. (PMID: 23709750)
- 8 Spratt DE, Beeler WH, de Moraes FY. et al. An integrated multidisciplinary algorithm for the management of spinal metastases: an International Spine Oncology Consortium report. The Lancet Oncology 2017; 18: e720-e730 DOI: 10.1016/s1470-2045(17)30612-5. (PMID: 29208438)
- 9 Depreitere B, Ricciardi F, Arts M. et al. How good are the outcomes of instrumented debulking operations for symptomatic spinal metastases and how long do they stand? A subgroup analysis in the global spine tumor study group database. Acta neurochirurgica 2020; 162: 943-950 DOI: 10.1007/s00701-019-04197-5. (PMID: 31953690)
- 10 Ringel F, Ryang Y-M, Kirschke JS. et al. Radiolucent Carbon Fiber-Reinforced Pedicle Screws for Treatment of Spinal Tumors: Advantages for Radiation Planning and Follow-Up Imaging. World neurosurgery 2017; 105: 294-301 DOI: 10.1016/j.wneu.2017.04.091. (PMID: 28478252)
- 11 Hansen-Algenstaedt N, Kwan MK, Algenstaedt P. et al. Comparison Between Minimally Invasive Surgery and Conventional Open Surgery for Patients With Spinal Metastasis: A Prospective Propensity Score-Matched Study. Spine 2017; 42: 789-797 DOI: 10.1097/BRS.0000000000001893. (PMID: 27584676)
- 12 Hamad A, Vachtsevanos L, Cattell A. et al. Minimally invasive spinal surgery for the management of symptomatic spinal metastasis. British journal of neurosurgery 2017; 31: 526-530 DOI: 10.1080/02688697.2017.1297374. (PMID: 28264589)
- 13 Hansen-Algenstaedt N, Kwan MK, Algenstaedt P. et al. Comparison Between Minimally Invasive Surgery and Conventional Open Surgery for Patients With Spinal Metastasis: A Prospective Propensity Score-Matched Study. Spine 2017; 42: 789-797 DOI: 10.1097/brs.0000000000001893. (PMID: 27584676)
- 14 Hamad A, Vachtsevanos L, Cattell A. et al. Minimally invasive spinal surgery for the management of symptomatic spinal metastasis. British journal of neurosurgery 2017; 31: 526-530 DOI: 10.1080/02688697.2017.1297374. (PMID: 28264589)
- 15 Ringel F, Villard J, Ryang YM. et al. Navigation, robotics, and intraoperative imaging in spinal surgery. Advances and technical standards in neurosurgery 2014; 41: 3-22 DOI: 10.1007/978-3-319-01830-0_1. (PMID: 24309918)
- 16 Ryang YM, Villard J, Obermüller T. et al. Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine. The spine journal : official journal of the North American Spine Society 2015; 15: 467-476 DOI: 10.1016/j.spinee.2014.10.003. (PMID: 25315133)
- 17 Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine 2007; 32: E111-E120 DOI: 10.1097/01.brs.0000254048.79024.8b. (PMID: 17268254)
- 18 Tian NF, Huang QS, Zhou P. et al. Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 2011; 20: 846-859 DOI: 10.1007/s00586-010-1577-5. (PMID: 20862593)
- 19 Rienmüller A, Buchmann N, Kirschke JS. et al. Accuracy of CT-navigated pedicle screw positioning in the cervical and upper thoracic region with and without prior anterior surgery and ventral plating. The bone & joint journal 2017; 99-b: 1373-1380 DOI: 10.1302/0301-620x.99b10.bjj-2016-1283.r1. (PMID: 28963160)
- 20 Verma R, Krishan S, Haendlmayer K. et al. Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5,992 pedicle screws. Eur Spine J 2010; 19: 370-375 DOI: 10.1007/s00586-009-1258-4. (PMID: 20052504)
- 21 Villard J, Ryang YM, Demetriades AK. et al. Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation: a prospective randomized comparison of navigated versus non-navigated freehand techniques. Spine 2014; 39: 1004-1009 DOI: 10.1097/brs.0000000000000351.
- 22 Jackson 3rd JB, Crimaldi AJ, Peindl R. et al. Effect of Polyether Ether Ketone on Therapeutic Radiation to the Spine: A Pilot Study. Spine 2017; 42: E1-E7 DOI: 10.1097/BRS.0000000000001695. (PMID: 27196026)
- 23 Lindtner RA, Schmid R, Nydegger T. et al. Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading. European Spine Journal 2018; 27: 1775-1784 DOI: 10.1007/s00586-018-5538-8. (PMID: 29497852)
- 24 Wagner A, Haag E, Joerger AK. et al. Cement-Augmented Carbon Fiber-Reinforced Pedicle Screw Instrumentation for Spinal Metastases: Safety and Efficacy. World neurosurgery 2021; 154: e536-e546 DOI: 10.1016/j.wneu.2021.07.092. (PMID: 34339894)
- 25 Boriani S, Tedesco G, Ming L. et al. Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: a preliminary report. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2018; 27: 874-881 DOI: 10.1007/s00586-017-5258-5.
- 26 Müller BS, Ryang YM, Oechsner M. et al. The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon-fiber-reinforced PEEK systems. Journal of applied clinical medical physics 2020; 21: 6-14 DOI: 10.1002/acm2.12905. (PMID: 32476247)