Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(13): 1302-1308
DOI: 10.1055/a-1833-9025
DOI: 10.1055/a-1833-9025
letter
Electrochemical Reduction of Aldehydes and Ketones for the Synthesis of Alcohols and Diols under Ambient Conditions
We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21672047 and 22101066), the Science and Technology Planning Project of Shenzhen (JCYJ20180306171926120 and JCYJ20210324133001004), the Natural Science Foundation of Guangdong Province (No. 2020A1515010564), and Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515220069). W.X. is grateful to the Talent Plan of the Pearl River in Guangdong, a start-up fund from the Shenzhen Government, and for financial support from Guangdong Province Covid-19 Pandemic Control Research Fund (no. 2020KZDZX1218). The project was also supported by the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University.
Abstract
A sustainable, practical, and direct strategy for the reduction of carbonyl compounds, including aldehydes and ketones, by an electrochemical pathway is presented, affording a variety of alcohols or diols as major products with decent yields. The reaction proceeds smoothly in the air at ambient temperatures with DABCO as the sacrificial reductant. Mechanistic studies revealed that direct electrochemical reduction followed by either protonation or radical–radical homocoupling is the main pathway.
Key words
electrochemistry - reduction - transition-metal-free - alcohols - pinacols - carbonyl compoundsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1833-9025.
- Supporting Information
Publication History
Received: 24 March 2022
Accepted after revision: 23 April 2022
Accepted Manuscript online:
25 April 2022
Article published online:
17 May 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2013; 113: 5595
- 1b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2 Dubrovskiy AV, Kesharwani T, Markina NA, Pletnev AA, Raminelli C, Yao T, Zeni G, Zhang L, Zhang XR, Rozhkov R. In Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 3rd ed. Larock RC. Wiley; New York: 2018
- 3a Weissermel K, Arpe H.-J. Industrial Organic Chemistry, 3rd ed. Wiley-VCH; Weinheim: 2010
- 3b Comprehensive Organic Synthesis II, 2nd ed. Molander GA, Knochel P. Elsevier; Amsterdam: 2014
- 3c Kallmeier F, Kempe R. Angew. Chem. Int. Ed. 2018; 57: 46
- 3d Homogeneous Hydrogenation with Non-Precious Catalysts. Teichert JF. Wiley-VCH; : Weinheim
- 4a Schmittel M, Burghart A. Angew. Chem. Int. Ed. 1997; 36: 2550
- 4b Berger DJ, Tanko JM. In The Chemistry of Double–Bonded Functional Groups . Patai S. Wiley; New York, NY: 1997: 1281
- 4c Schmittel M, Ghorai MK. In Electron Transfer in Chemistry, Vol. II. Balzani V. Wiley-VCH; Weinheim: 2001: 5
- 5a Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 5b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 6a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 6b Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
- 6c Meyer TH, Choi I, Tian C, Ackermann L. Chem 2020; 6: 2484
- 7a Ishitani O, Pac C, Sakurai H. J. Org. Chem. 1983; 48: 2941
- 7b Ishitani O, Yanagida S, Takamuku S, Pac C. J. Org. Chem. 1987; 52: 2790
- 7c Willner I, Tsfania T, Eichen Y. J. Org. Chem. 1990; 55: 2656
- 7d Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 8828
- 8 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
- 9 Li K, Wan Q, Yang C, Chang X.-Y, Low K.-H, Che C.-M. Angew. Chem. Int. Ed. 2018; 57: 14129
- 10a Hang M, Huynh MH. V, Meyer TJ. Chem. Rev. 2007; 107: 5004
- 10b Hammes-Schiffer S. Chem. Rev. 2010; 110: 6937
- 10c Scaiano JC, Stamplecoskie KG, Hallett-Tapley GL. Chem. Commun. 2012; 48: 4798
- 10d Gentry EC, Knowles RR. Acc. Chem. Res. 2016; 49: 1546
- 10e Lin L, Bai X, Ye X, Zhao X, Tan C.-H, Jiang Z. Angew. Chem. Int. Ed. 2017; 56: 13842
- 11 Fukuzumi S, Ishikawa K, Hironaka K, Tanaka T. J. Chem. Soc., Perkin Trans. 2 1987; 751
- 12a Fokin I, Siewert I. Chem. Eur. J. 2020; 26: 14137
- 12b Chalkley MJ, Garrido-Barros P, Peters JC. Science 2020; 369: 850
- 12c Chardon-Noblat S, de Oliveira IM. F, Moutet J.-C, Tingry S. J. Mol. Catal. A: Chem. 1995; 99: 13
- 12d Caix C, Chardon-Noblat S, Deronzier A, Moutet J.-C, Tingry S. J. Organomet. Chem. 1997; 540: 105
- 12e Moutet J.-C, Duboc-Toia C, Ménage S, Tingry SA. Adv. Mater. (Weinheim, Ger.) 1998; 10: 665
- 13 Nakahara K, Naba K, Saitoh T, Sugai T, Obata R, Nishiyama S, Einaga Y, Yamamoto T. ChemElectroChem 2019; 6: 4153
- 14a Parrish JD, Little RD. Tetrahedron Lett. 2001; 42: 7767
- 14b Andreu R, Pletcher D. Electrochim. Acta 2003; 48: 1065
- 14c Yee R, Mallory J, Parrish JD, Carroll GL, Little RD. J. Electroanal. Chem. 2006; 593: 69
- 15a Lagrost C, Hapiot P, Vaultier M. Green Chem. 2005; 7: 468
- 15b André F, Hapiot P, Lagrost C. Phys. Chem. Chem. Phys. 2010; 12: 7506
- 15c Kronenwetter H, Husek J, Etz B, Jones A, Manchanayakage R. Green Chem. 2014; 16: 1495
- 16a Huang B, Li Y.-N, Yang C, Xia W. Chem. Commun. 2019; 55: 6731
- 16b Huang B, Yang C, Zhou J, Xia W. Chem. Commun. 2020; 56: 5010
- 16c Huang B, Guo L, Xia W. Green Chem. 2021; 23: 2095
- 17a Bondue CJ, Calle-Vallejo F, Figueiredo MC, Koper MT. M. Nat. Catal. 2019; 2: 243
- 17b Bondue CJ, Koper MT. M. J. Am. Chem. Soc. 2019; 141: 12071
- 17c Villalba M, del Pozo M, Calvo EJ. Electrochim. Acta 2015; 164: 125
- 18 (4-Methylphenyl)(phenyl)methanol (2a)1; Gram-Scale Synthesis A 100 mL beaker equipped with a magnetic stirrer bar was charged with ketone 1a (1.0 equiv, 6.0 mmol) and electrolyte Bu4NBF4 (0.05 M), followed by DABCO (3.0 equiv, 2.02 g, 18 mmol) and DMF (50 mL). The flask was subsequently equipped with a Pt plate anode (30 × 30 × 0.2 mm3) and a graphite plate cathode (20 × 20 × 3 mm3) separated by ~2 cm. Constant-current electrolysis (10 mA) was then performed at rt under air with vigorous stirring for 50 h. When the reaction was complete (TLC), the mixture was poured into brine and extracted with EtOAc (×3). The combined organic layer was washed with brine (×3) then dried (Na2SO4) and concentrated under reduced pressure. The resulting mixture was purified by column chromatography (silica gel, EtOAc–PE) to give a white solid; yield: 1.08 g (91%). 1H NMR (400 MHz, CDCl3): δ = 7.39 (d, J = 7.0 Hz, 2 H), 7.34 (t, J = 7.5 Hz, 2 H), 7.27 (d, J = 8.0 Hz, 3 H), 7.15 (d, J = 7.9 Hz, 2 H), 5.82 (s, 1 H), 2.34 (s, 3 H), 2.24 (s, 1 H). 13C NMR (101 MHz, CDCl3): δ = 144.0, 141.0, 137.4, 129.3, 128.5, 127.5, 126.6, 126.5, 76.2, 21.2.
- 19a Maeda H, Maki T, Eguchi K, Koide T, Ohmori H. Tetrahedron Lett. 1994; 35: 4129
- 19b Islam N.-u, Sopher DW, Utley JH. P. Tetrahedron 1987; 43: 959
- 19c Herrmann JM, König B. Eur. J. Org. Chem. 2013; 7017
- 20a Atzrodt J, Derdau V, Fey T, Zimmermann J. Angew. Chem. Int. Ed. 2007; 46: 7744
- 20b Gant TG. J. Med. Chem. 2014; 57: 3595
- 20c Mullard A. Nat. Rev. Drug Discovery 2016; 15: 219
- 20d Yu RP, Hesk D, Rivera N, Pelczer I, Chirik PJ. Nature 2016; 529: 195