Synlett 2022; 33(07): 684-688
DOI: 10.1055/a-1790-2858
letter

Bridging Chlorine Atoms Enable the Construction of a Novel ­Benzimidazole-Derived Fluorescent Molecule

Xiangyu Yan
a   State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. of China
,
Bowen Jiang
a   State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. of China
,
Guanggao Fan
a   State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. of China
,
Yu Zou
b   College of Chemistry, Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350108, P. R. of China
,
Wei Sang
a   State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. of China
,
Cheng Chen
a   State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. of China
,
Ye Yuan
a   State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, P. R. of China
› Institutsangaben
This research was supported by fund for the Key Laboratory of Catalysis and Energy Materials Chemistry of the Ministry of Education and the Hubei Key Laboratory of Catalysis and Materials Science (No. CHCL19002), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology, No. 2021-KF-19).


Abstract

We have designed and prepared a novel benzimidazole-based fluorescent molecule through the construction of chlorine bridges. The structure of the molecule was authenticated by means of X-ray crystallography and its photophysical properties (absorption and fluorescence spectra) were investigated. Furthermore, the fluorescence emission of the molecule was rationalized through density functional theory calculations, which showed the influence of the bridging chlorine atoms on the energy levels and energy gap.

Supporting Information



Publikationsverlauf

Eingereicht: 23. Dezember 2021

Angenommen nach Revision: 07. März 2022

Accepted Manuscript online:
07. März 2022

Artikel online veröffentlicht:
25. März 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Vasava MS, Bhoi MN, Rathwa SK, Jethava DJ, Acharya PT, Patel DB, Patel HD. Mini-Rev. Med. Chem. 2020; 20: 532
    • 1b Law CS. W, Yeong KY. ChemMedChem 2021; 16: 1861
  • 2 Pandey S, Bansal D, Gupta R. New J. Chem. 2018; 42: 9847
    • 3a Song D, Ma S. ChemMedChem 2016; 11: 646
    • 3b Küçükbay H, Uçkun M, Apohan E, Yeşilada Ö. Arch. Pharm. (Weinheim, Ger.) 2021; 354: e2100076
    • 5a Wu Y.-C, You J.-Y, Guan L.-T, Shi J, Cao L, Wang Z.-Y. Youji Huaxue 2015; 35: 2465
    • 5b Anbu S, Paul A, Surendranath K, Solaiman NS, Pombeiro AJ. L. Sens. Actuators, B 2021; 337: 129785
    • 5c Li D, Zhong Z, Zheng G, Tian Z. Spectrochim. Acta, Part A 2017; 185: 173
  • 6 Li X, Zhao S, Li B, Yang K, Lan M, Zeng L. Coord. Chem. Rev. 2021; 431: 213686
    • 7a Tzeng B.-C, Chen B.-S, Chen C.-K, Chang Y.-P, Tzeng W.-C, Lin T.-Y, Lee G.-H, Chou P.-T, Fu Y.-J, Chang A.-H. Inorg. Chem. 2011; 50: 5379
    • 7b Hu J.-H, Li J.-B, Qi J, Chen J.-J. New J. Chem. 2015; 39: 843
    • 7c Yang Y, Li B, Zhang L, Guan Y. J. Lumin. 2014; 145: 895
    • 7d Jung H.-J, Singh N, Jang DO. Tetrahedron Lett. 2008; 49: 2960
    • 7e Saluja P, Kaur N, Singh N, Jang DO. Tetrahedron Lett. 2012; 53: 3292
    • 7f Jiang X, Liu Z, Yang Y, Li H, Qi X, Ren W, Deng M, Lü M, Wu J, Liang S. Spectrochim. Acta, Part A 2020; 224: 117435
    • 7g Zhao M, Deng Z, Tang J, Zhou X, Chen Z, Li X, Yang L, Ma L.-J. Analyst 2016; 141: 2308
  • 8 Kim S, Kang DH, Ju H, Lee E, Jung JH, Lee SS, Choi KS, Park I.-H. Inorg. Chim. Acta 2018; 478: 44
  • 9 Adams RD, Smith MD, Tedder JD, Wakdikar ND. J. Organomet. Chem. 2021; 941: 121799
  • 10 Wu Y.-C, You J.-Y, Jiang K, Wu H.-Q, Xiong J.-F, Wang Z.-Y. Dyes Pigm. 2018; 149: 1
  • 11 Zhao J.-H, Hu Y.-X, Lu H.-Y, Lü Y.-L, Li X. Org. Electron. 2017; 41: 56
  • 12 Chaurasia S, Li C.-T, Desta MB, Ni J.-S, Lin JT. Chem. Asian J. 2017; 12: 996
    • 13a Sang W, Gavi AJ, Yu B.-Y, Cheng H, Yuan Y, Wu Y, Lommens P, Chen C, Verpoort F. Chem. Asian J. 2020; 15: 129
    • 13b Sang W, Gong Y.-Y, Cheng H, Zhang R, Yuan Y, Fan G.-G, Wang Z.-Q, Chen C, Verpoort F. Adv. Synth. Catal. 2021; 363: 1408
    • 13c Fan G.-G, Jiang B.-W, Sang W, Cheng H, Zhang R, Yu B.-Y, Yuan Y, Chen C, Verpoort F. J. Org. Chem. 2021; 86: 14627
  • 14 P1A 25 mL Schlenk flask equipped with a suitable stirrer bar was charged with 2-chlorobenzimidazole (1; 0.5 mmol) and n-hexylamine (2; 1.5 mmol), then capped with a rubber septum and subjected to three cycles of evacuation and backfilling with argon. The mixture was then heated at 120 ℃ for 16 h under argon. Finally, the product was directly purified by column chromatography [silica gel, CH2Cl2–MeOH (20:1)] to give a light-yellow solid; mp 134.5–135.4 ℃.1H NMR (500 MHz, CDCl3): δ = 12.06 (s, 1 H), 7.91 (s, 1 H), 7.43–7.28 (m, 2 H), 7.14–7.02 (m, 2 H), 3.57 (t, J = 6.7 Hz, 2 H), 1.67–1.57 (m, 2 H), 1.37–1.27 (m, 2 H), 1.18–1.09 (m, 4 H), 0.74 (t, J = 6.2 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 154.9, 135.6, 121.2, 111.6, 43.5, 31.3, 29.7, 26.4, 22.4, 13.8. HRMS (APCI): m/z [M – H] calcd for C52H75Cl2N12: 937.56202; found: 216.15062, 252.12730, and 469.28520 (fragment peaks)
  • 15 CCDC 2122025 contains the supplementary crystallographic data for compound P1. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 16 Cotton FA, Murillo CA, Pascual I. Inorg. Chem. Commun. 1999; 2: 101
  • 17 Sessler CD, Rahm M, Becker S, Goldberg JM, Wang F, Lippard SJ. J. Am. Chem. Soc. 2017; 139: 9325
  • 18 Hou Q.-F, Wu J.-J, Liang J.-M, Liu F.-H, He Y, Zhang Q.-R, Cheng H, Chen C, Peng D.-Y. Curr. Org. Chem. 2020; 24: 1517
    • 19a Huang J, Li Y, Wang Y, Meng H, Yan D, Jiang B, Wei Z, Zhan C. Dyes Pigm. 2018; 153: 1
    • 19b Li Y, Meng H, Liu T, Xiao Y, Tang Z, Pang B, Li Y, Xiang Y, Zhang G, Lu X, Yu G, Yan H, Zhan C, Huang J, Yao J. Adv. Mater. (Weinheim, Ger.) 2019; 31: e1904585