Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(05): 468-472
DOI: 10.1055/a-1760-8951
DOI: 10.1055/a-1760-8951
letter
Hydrothiolation of Donor–Acceptor Cyclopropanes through Er(OTf)3-Promoted Three-Component Ring-Opening Reaction
We thank Alexander von Humboldt Foundation for the Linkage Research Group Program Award and Iran National Science Foundation for the research fellowship (Grant No. 99029802).
Abstract
A novel ring-opening reaction of donor–acceptor cyclopropanes (DACs) through a one-pot three-component nucleophilic addition of amines, CS2, and DACs has been described. New γ-dithiocarbamate dialkyl malonate skeletons were obtained in up to 97% yield.
Key words
donor–acceptor cyclopropanes - hydrothiolation - ring-opening reaction - three-component reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1760-8951.
- Supporting Information
Publication History
Received: 19 January 2022
Accepted after revision: 03 February 2022
Accepted Manuscript online:
04 February 2022
Article published online:
21 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Wenkert EM, Alonso E, Buckwalter BL, Chou KJ. J. Am. Chem. Soc. 1977; 99: 4778
- 1b Piers E, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1979; 18: 791
- 1c Reissig H.-U, Hirsch E. Angew. Chem., Int. Ed. Engl. 1980; 19: 813
- 1d Reissig H.-U. Top. Curr. Chem. 1988; 144: 73
- 1e Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
- 1f Brückner C, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1985; 24: 588
- 2a Danishefsky S. Acc. Chem. Res. 1979; 12: 66
- 2b Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
- 2c Davies HM. L, Denton JR. Chem. Soc. Rev. 2009; 38: 3061
- 2d Zhang D, Song H, Qin Y. Acc. Chem. Res. 2011; 44: 447
- 2e Tang P, Qin Y. Synthesis 2012; 44: 2969
- 2f Lautens M, Ren Y. J. Am. Chem. Soc. 1996; 118: 9597
- 2g Bertozzi F, Gustafsson M, Olsson R. Org. Lett. 2002; 4: 4333
- 3a Singh P, Varshnaya RK, Dey R, Banerjee P. Adv. Synth. Catal. 2020; 362: 1447
- 3b Das S, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2017; 56: 11554
- 3c Ivanova OA, Trushkov IV. Chem. Rec. 2019; 19: 2189
- 3d Pirenne V, Muriel B, Waser J. Chem. Rev. 2021; 121: 227
- 4a Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 4b Budynina EM, Ivanov KL, Sorokin ID, Melnikov MY. Synthesis 2017; 49: 3035
- 5a Oliver GA, Loch MN, Augustin AU, Steinbach P, Sharique M, Tambar UK, Jones PG, Bannwarth C, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 25825
- 5b Mlostoń G, Kowalczyk M, Augustin AU, Jones PG, Werz DB. Eur. J. Org. Chem. 2021; 46: 6250
- 5c Jacob A, Barkawitz P, Andreev IA, Ratmanova NK, Trushkov IV, Werz DB. Synlett 2021; 32: 901
- 5d Augustin AU, Merz JL, Jones PG, Mlostoń G, Werz DB. Org. Lett. 2019; 21: 9405
- 5e Augustin AU, Busse M, Jones PG, Werz DB. Org. Lett. 2018; 20: 820
- 5f Augustin AU, Sensse M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 14293
- 5g Garve LK. B, Pawliczek M, Wallbaum J, Jones PG, Werz DB. Chem. Eur. J. 2016; 22: 521
- 6a Augustin AU, Werz DB. Acc. Chem. Res. 2021; 54: 1528
- 6b Xia Y, Lin L, Chang F, Fu X, Liu X, Feng X. Angew. Chem. Int. Ed. 2015; 54: 13748
- 7a Viola-Rhenals M, Patel KR, Jaimes-Santamaria L, Wu G, Liu J, Dou QP. Curr. Med. Chem. 2018; 25: 506
- 7b Gerhäuser C, You M, Liu J, Moriarty RM, Hawthorne M, Mehta RG, Moon RC, Pezzuto JM. Cancer Res. 1997; 57: 272
- 7c Hänel H, Raether W, Dittmar W. Ann. N. Y. Acad. Sci. 1988; 544: 329
- 7d Ramirez MA, Borja NL. Pharmacotherapy 2008; 28: 646
- 7e Ji XW, Ji SM, Li RT, Wu KH, Zhu X, Lu W, Zhou TY. Acta Pharmacol. Sin. 2016; 37: 825
- 7f Kapanda CN, Masquelier J, Labar G, Muccioli GG, Poupaert JH, Lambert DM. J. Med. Chem. 2012; 55: 5774
- 7g Kotali E, Varvoglis A. J. Chem. Soc., Perkin Trans. 1 1987; 2759
- 7h Len C, Boulognemerlot AS, Postel D. J. Agric. Food. Chem. 1996; 44: 2856
- 8a Azizi N, Aryanasab F, Torkiyan L, Ziyaei A, Saidi MR. J. Org. Chem. 2006; 71: 3634
- 8b Kraus GA, Selvakumar N. J. Org. Chem. 1998; 63: 9846
- 9 Ziyaei HalimehjaniA, Breit B. Chem. Commun. 2019; 55: 1253
- 10a Bhattacharjee S, Deswal S, Manoj N, Jindal G, Biju AT. Org. Lett. 2021; 23: 9083
- 10b Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
- 11a Skvorcova M, Grigorjeva L, Jirgensons A. Org. Lett. 2015; 17: 2902
- 11b Kreft A, Lücht A, Grunenberg J, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 1955
- 12 Dithiocarbamates 4a–o: General ProcedureTo a mixture of carbon disulfide 2 (0.6 mmol, 2 equiv) and toluene (3 mL) as a solvent, amine 1a–f (0.3 mmol) was added, and the mixture was stirred for 30 min at ambient temperature. Then the donor–acceptor cyclopropane 3a–j (0.3 mmol) and Er(OTf)3 (18 mg, 10 mol%) as a Lewis acid was added, and the mixture was heated at 90 °C for 4 h. After completion, the solvent was removed in vacuo, and the products were purified by flash column chromatography using n-hexane/EtOAc (8:1) as an eluent to give dithiocarbamates 4a–o. Dimethyl 2-{2-phenyl-2-[(piperidine-1-carbonothioyl)-thio]ethyl}malonate (4a)Colorless solid; mp 130–131 °C (96 mg , yield 82%, silica gel, n-hexane/EtOAc = 8:1). 1H{13C} NMR (CDCl3, 300 MHz): δ = 7.41–7.28 (m, 5 H, HAr), 5.27 (dd, J = 8.6, 2.2 Hz, 1 H, SCH), 4.25 (br s, 2 H, NCHeq), 3.84 (br s, 2 H, NCHax), 3.78 (s, 3 H, OMe), 3.59 (s, 3 H, OMe), 3.44 (t, J = 7.3 Hz, 1 H, CH), 2.83–2.61 (m, 2 H, CH2), 1.60–1.70 (m, 6 H, 3(CH2)) ppm. 13C{1H} NMR (CDCl3, 75 MHz): δ = 193.5, 169.2, 169.1, 139.5, 128.7, 128.3, 127.8, 53.7, 52.7, 52.5, 50.0, 35.2, 25.9, 25.4, 24.2 ppm. HRMS-ESI: m/z calcd for C19H26NO4S2 [M + H]+: 396.1297; found: 396.1296.
- 13 CCDC 2130147 and 2130148 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.