Subscribe to RSS
DOI: 10.1055/a-1759-1749
Cisplatin – A more Efficient Drug in Combination with Radionuclides?
Cisplatin – Größere Wirksamkeit bei Kombination mit Radionukliden?Abstract
Aim The combination of conventional chemotherapeutic drugs with radionuclides or external radiation is discussed for a long period of time. The major advantage of a successful combination therapy is the reduction of severe side effects by decreasing the needed dose and simultaneously increasing therapeutic efficiency.
Methods In this study, pUC19 plasmid DNA was incubated with the cytostatic drug cisplatin and additionally irradiated with 99mTc, 188Re and 223Ra. To verify the contribution of possibly excited platinum atoms to the emission of Auger electrons we determined DNA damages, such as single- and double strand breaks.
Results The threshold concentration value of cisplatin, which was tolerated by pUC19 plasmid DNA was determined to be 18–24 nM. Nevertheless, even at higher dose values (>100 Gy) and simultaneous incubation of cisplatin to 200 ng plasmid DNA, no significant increase in the number of induced single- and double-strand breaks was obtained, compared to the damage solely caused by the radionuclides.
Conclusion We thereby conclude that there is no direct dependence of the mechanism of strand break induction to the absence or presence of platinum atoms attached to the DNA. Reported increasing DNA damages in therapy approaches on a cellular level strongly depend on the study design and are mainly influenced by repair mechanisms in living cells. Nevertheless, the use of radioactive cisplatin, containing the Auger electron emitter 191Pt, 193mPt or 195mPt, is a bright prospect for future therapy by killing tumor cells combining two operating principles: a cytostatic drug and a radiopharmaceutical at the same time.
Zusammenfassung
Ziel Die Kombination herkömmlicher Chemotherapeutika mit Radionukliden oder externer Bestrahlung wird seit Langem diskutiert. Der große Vorteil einer erfolgreichen Kombinationstherapie ist die Reduzierung schwerer Nebenwirkungen durch Verringerung der benötigten Dosis bei gleichzeitiger Erhöhung der therapeutischen Effizienz.
Methoden In dieser Studie wurde pUC19-Plasmid-DNA mit dem Zytostatikum Cisplatin inkubiert und zusätzlich mit 99mTc, 188Re und 223Ra bestrahlt. Um den Beitrag möglicherweise angeregter Platinatome zur Emission von Auger-Elektronen zu überprüfen, bestimmten wir DNA-Schäden wie Einzel- und Doppelstrangbrüche.
Ergebnisse Als Schwellenkonzentrationswert von Cisplatin, der von pUC19-Plasmid-DNA toleriert wurde, wurde 18–24 nM bestimmt. Dennoch wurde selbst bei höheren Dosiswerten (>100Gy) und gleichzeitiger Inkubation von Cisplatin mit 200ng Plasmid-DNA keine signifikante Erhöhung der Zahl der induzierten Einzel- und Doppelstrangbrüche im Vergleich zu den allein durch die Radionuklide verursachten Schäden festgestellt.
Schlussfolgerung Wir schließen daraus, dass keine direkte Abhängigkeit besteht, was den Mechanismus der Strangbruchinduktion und das Fehlen oder Vorhandensein von an die DNA gebundenen Platinatomen anbelangt. Die berichteten zunehmenden DNA-Schäden bei Therapieansätzen auf zellulärer Ebene hängen stark vom Studiendesign ab und werden hauptsächlich durch die Reparaturmechanismen in lebenden Zellen beeinflusst. Dennoch ist die Verwendung von radioaktivem Cisplatin, das den Auger-Elektronenemitter 191Pt, 193mPt oder 195mPt enthält, eine glänzende Perspektive für zukünftige Therapien zum Abtöten von Tumorzellen, die 2 Wirkprinzipien kombiniert: ein Zytostatikum und ein Radiopharmakon gleichzeitig.
Schlüsselwörter
Cisplatin - Kombinationstherapie - radiosensibilisierende Effekte - Strahlentherapie - Auger-TherapiePublication History
Received: 09 July 2021
Accepted after revision: 22 January 2022
Article published online:
06 April 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Einhorn LH, Williams SD. The role of cis-platinum in solid-tumor therapy. N Engl J Med 1979; 300: 289-291 DOI: 10.1056/NEJM197902083000605. (PMID: 366407)
- 2 Esteban-Fernandez D, Verdaguer JM, Ramirez-Camacho R. et al. Accumulation, fractionation, and analysis of platinum in toxicologically affected tissues after cisplatin, oxaliplatin, and carboplatin administration. J Anal Toxicol 2008; 32: 140-146 DOI: 10.1093/jat/32.2.140. (PMID: 18334097)
- 3 Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol 2019; 53: 148-158 DOI: 10.2478/raon-2019-0018. (PMID: 30956230)
- 4 Brown A, Kumar S, Tchounwou PB. Cisplatin-Based Chemotherapy of Human Cancers. J Cancer Sci Ther 2019; 11: 97 (PMID: 32148661)
- 5 Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007; 7: 573-584 DOI: 10.1038/nrc2167. (PMID: 17625587)
- 6 Wardman P. Chemical radiosensitizers for use in radiotherapy. Clin Oncol (R Coll Radiol) 2007; 19: 397-417 DOI: 10.1016/j.clon.2007.03.010. (PMID: 17478086)
- 7 Johnstone TC, Suntharalingam K, Lippard SJ. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem Rev 2016; 116: 3436-3486 DOI: 10.1021/acs.chemrev.5b00597. (PMID: 26865551)
- 8 Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 2011; 11: 239-253 DOI: 10.1038/nrc3007. (PMID: 21430696)
- 9 Nias AH. Radiation and platinum drug interaction. Int J Radiat Biol Relat Stud Phys Chem Med 1985; 48: 297-314 DOI: 10.1080/09553008514551301. (PMID: 3897092)
- 10 Cai Y, Sheng Z, Liang S. Radiosensitization effects of curcumin plus cisplatin on non-small cell lung cancer A549 cells. Oncol Lett 2019; 18: 529-534 DOI: 10.3892/ol.2019.10364. (PMID: 31289524)
- 11 Dong Y, Wang Y, Zhuang P. et al. Role of Transient Anions in Chemoradiation Therapy: Base Modifications, Cross-Links, and Cluster Damages Induced to Cisplatin-DNA Complexes by 1–20 eV Electrons. J Phys Chem B 2020; 124: 3315-3325 DOI: 10.1021/acs.jpcb.0c00946. (PMID: 32233508)
- 12 Xiao F, Luo X, Fu X. et al. Cleavage enhancement of specific chemical bonds in DNA by cisplatin radiosensitization. J Phys Chem B 2013; 117: 4893-4900 DOI: 10.1021/jp400852p. (PMID: 23551177)
- 13 Yoshikawa H, Sunada S, Hirakawa H. et al. Radiobiological Characterization of Canine Malignant Melanoma Cell Lines with Different Types of Ionizing Radiation and Efficacy Evaluation with Cytotoxic Agents. Int J Mol Sci 2019; 20 DOI: 10.3390/ijms20040841. (PMID: 30781345)
- 14 Bao Q, Chen Y, Zheng Y. et al. Cisplatin Radiosensitization of DNA Irradiated with 2–20 eV Electrons: Role of Transient Anions. J Phys Chem C Nanomater Interfaces 2014; 118: 15516-15524 DOI: 10.1021/jp503706h. (PMID: 26793285)
- 15 Behmand B, Wagner JR, Sanche L. et al. Cisplatin intrastrand adducts sensitize DNA to base damage by hydrated electrons. J Phys Chem B 2014; 118: 4803-4808 DOI: 10.1021/jp5014913. (PMID: 24779712)
- 16 Rezaee M, Alizadeh E, Cloutier P. et al. A single subexcitation-energy electron can induce a double-strand break in DNA modified by platinum chemotherapeutic drugs. ChemMedChem 2014; 9: 1145-1149 DOI: 10.1002/cmdc.201300462. (PMID: 24376113)
- 17 Rezaee M, Sanche L, Hunting DJ. Cisplatin enhances the formation of DNA single- and double-strand breaks by hydrated electrons and hydroxyl radicals. Radiat Res 2013; 179: 323-331 DOI: 10.1667/RR3185.1. (PMID: 23368416)
- 18 Usami N, Kobayashi K, Furusawa Y. et al. Irradiation of DNA loaded with platinum containing molecules by fast atomic ions C(6+) and Fe(26+). Int J Radiat Biol 2007; 83: 569-576 DOI: 10.1080/09553000701447130.
- 19 Sahbani S, Al-Khateeb M, Hikmat R. Early marriage and pregnancy among Syrian adolescent girls in Jordan; do they have a choice?. Pathog Glob Health 2016; 110: 217-218 DOI: 10.1080/20477724.2016.1231834. (PMID: 27680296)
- 20 Caney C, Singh G, Lukka H. et al. Combined gamma-irradiation and subsequent cisplatin treatment in human squamous carcinoma cell lines sensitive and resistant to cisplatin. Int J Radiat Biol 2004; 80: 291-299 DOI: 10.1080/09553000410001679767. (PMID: 15204706)
- 21 Kotzerke J, Punzet R, Runge R. et al. 99mTc-labeled HYNIC-DAPI causes plasmid DNA damage with high efficiency. PLoS One 2014; 9: e104653 DOI: 10.1371/journal.pone.0104653. (PMID: 25098953)
- 22 Reissig F, Mamat C, Steinbach J. et al. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance. PLoS One 2016; 11: e0161973 DOI: 10.1371/journal.pone.0161973. (PMID: 27583677)
- 23 Reissig F, Wunderlich G, Runge R. et al. The effect of hypoxia on the induction of strand breaks in plasmid DNA by alpha-, beta- and Auger electron-emitters (223)Ra, (188)Re, (99m)Tc and DNA-binding (99m)Tc-labeled pyrene. Nucl Med Biol 2020; 80–81: 65-70 DOI: 10.1016/j.nucmedbio.2020.01.003. (PMID: 32001104)
- 24 Areberg J, Wennerberg J, Johnsson A. et al. Antitumor effect of radioactive cisplatin (191Pt) on nude mice. Int J Radiat Oncol Biol Phys 2001; 49: 827-832 DOI: 10.1016/s0360-3016(00)01419-x. (PMID: 11172966)
- 25 Hilgers K, Coenen HH, Qaim SM. Production of the therapeutic radionuclides 193mPt and 195mPt with high specific activity via alpha-particle-induced reactions on 192Os. Appl Radiat Isot 2008; 66: 545-551 DOI: 10.1016/j.apradiso.2007.10.009. (PMID: 18083038)
- 26 Nadar RA, Farbod K, der Schilden KC. et al. Targeting of radioactive platinum-bisphosphonate anticancer drugs to bone of high metabolic activity. Sci Rep 2020; 10: 5889 DOI: 10.1038/s41598-020-62039-2. (PMID: 32246003)
- 27 Bodei L, Kassis AI, Adelstein SJ. et al. Radionuclide therapy with iodine-125 and other auger-electron-emitting radionuclides: experimental models and clinical applications. Cancer Biother Radiopharm 2003; 18: 861-877 DOI: 10.1089/108497803322702833. (PMID: 14969599)
- 28 Buchegger F, Perillo-Adamer F, Dupertuis YM. et al. Auger radiation targeted into DNA: a therapy perspective. Eur J Nucl Med Mol Imaging 2006; 33: 1352-1363 DOI: 10.1007/s00259-006-0187-2. (PMID: 16896663)
- 29 Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med 2005; 46 (Suppl. 01) 4S-12S (PMID: 15653646)
- 30 Norrgren K, Sjolin M, Bjorkman S. et al. Comparative renal, hepatic, and bone marrow toxicity of Cisplatin and radioactive Cisplatin (191Pt) in Wistar rats. Cancer Biother Radiopharm 2006; 21: 528-534 DOI: 10.1089/cbr.2006.21.528. (PMID: 17105425)
- 31 Obata H, Minegishi K, Nagatsu K. et al. Production of (191)Pt from an iridium target by vertical beam irradiation and simultaneous alkali fusion. Appl Radiat Isot 2019; 149: 31-37 DOI: 10.1016/j.apradiso.2019.04.007. (PMID: 31005643)
- 32 Parent M, Strijckmans K, Cornelis R. et al. Production of Pt-191 Radiotracer with High Specific Activity for the Development of Preconcentration Procedures. Nucl Instrum Meth B 1994; 86: 355-366 DOI: 10.1016/0168-583x(94)95301-5.
- 33 Tarkanyi F, Kiraly B, Ditroi F. et al. Cross sections of deuteron induced nuclear reactions on iridium. Nucl Instrum Meth B 2006; 247: 210-216 DOI: 10.1016/j.nimb.2006.03.002.
- 34 Uddin MS, Hermanne A, Scholten B. et al. Small scale production of high purity Pt-193m by the Os-192(alpha, 3n)-process. Radiochim Acta 2011; 99: 131-135 DOI: 10.1524/ract.2011.1807.
- 35 Uddin MS, Scholten B, Hermanne A. et al. Radiochemical determination of cross sections of alpha-particle induced reactions on 192Os for the production of the therapeutic radionuclide 193mPt. Appl Radiat Isot 2010; 68: 2001-2006 DOI: 10.1016/j.apradiso.2010.05.002. (PMID: 20538474)
- 36 Sana A, Rasheed R, Rafique A. et al. Gynaecological Cancer Diagnostics: 99mTc-Cisplatin Complex as a Future Approach for Early, Prompt and Efficient Diagnosis of Gynaecological Cancer. Curr Med Imaging Rev 2019; 15: 611-621 DOI: 10.2174/1573405614666180809123233. (PMID: 32008509)
- 37 Corde S, Balosso J, Elleaume H. et al. Synchrotron photoactivation of cisplatin elicits an extra number of DNA breaks that stimulate RAD51-mediated repair pathways. Cancer Res 2003; 63: 3221-3227 (PMID: 12810651)
- 38 Maeda M, Kobayashi K, Hieda K. Efficiencies of induction of DNA double strand breaks in solution by photoabsorption at phosphorus and platinum. Int J Radiat Biol 2004; 80: 841-847 DOI: 10.1080/09553000400017598. (PMID: 15764391)
- 39 Freudenberg R, Wendisch M, Kotzerke J. Geant4-Simulations for cellular dosimetry in nuclear medicine. Z Med Phys 2011; 21: 281-289 DOI: 10.1016/j.zemedi.2011.08.003. (PMID: 21983023)
- 40 Runge R, Oehme L, Kotzerke J. et al. The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters (223)Ra, (188)Re, and (99m)Tc. EJNMMI Res 2016; 6: 48 DOI: 10.1186/s13550-016-0203-x. (PMID: 27259575)
- 41 Peak JG, Ito T, Robb FT. et al. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: effects of hydroxyl radical quenchers. Int J Radiat Biol 1995; 67: 1-6 DOI: 10.1080/09553009514550011. (PMID: 7852813)
- 42 Ushigome T, Shikazono N, Fujii K. et al. Yield of single- and double-strand breaks and nucleobase lesions in fully hydrated plasmid DNA films irradiated with high-LET charged particles. Radiat Res 2012; 177: 614-627 DOI: 10.1667/rr2701.1. (PMID: 22206232)
- 43 Obata H, Tsuji AB, Sudo H. et al. In Vitro Evaluation of No-Carrier-Added Radiolabeled Cisplatin ([(189, 191)Pt]cisplatin) Emitting Auger Electrons. Int J Mol Sci 2021; 22 DOI: 10.3390/ijms22094622. (PMID: 33924843)
- 44 Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22: 7265-7279 DOI: 10.1038/sj.onc.1206933. (PMID: 14576837)