Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50(01): 46-58
DOI: 10.1055/a-1751-3531
Übersichtsartikel

Chancen und Risiken der Nutzung genetischer Resistenzen gegen Infektionskrankheiten beim Schwein – eine Übersicht

Opportunities and risks of the use of genetic resistances to infectious diseases in pigs – an overview
Doris Höltig
1   Klinik für kleine Klauentiere, forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover, Hannover
,
Gerald Reiner
2   Klinikum Veterinärmedizin, Justus-Liebig-Universität, Gießen
› Author Affiliations

Zusammenfassung

Ansprüche an Gesundheit, Leistung und Wohlbefinden beim Schwein sowie der Wunsch nach Verbraucherschutz und reduziertem Antibiotikaeinsatz erfordern optimale Maßnahmen im Vorfeld möglicher Erkrankungen. Hierzu zählt prinzipiell auch der Einsatz genetisch resistenterer Linien und Elterntiere, deren Existenz für eine breite Palette an Erreger-Wirts-Interaktionen belegt ist. Außerdem wird versucht, die für die Krankheitsresistenz verantwortlichen Genvarianten zu identifizieren, um die Selektion geeigneter Populationen auch unter Einsatz neuerer biotechnischer Verfahren zu forcieren. Die vorliegende Arbeit soll einen Überblick über den dabei erreichten Forschungsstand geben sowie Chancen und Risiken für die Zukunft aufzeigen.

Die Auswertung der internationalen Literatur zeigt, dass sich in vielen Bereichen der Schweinekrankheiten genetische Krankheitsresistenzen abzeichnen. Polygener Erbgang, fehlende Tiermodelle und der Einfluss von Umweltfaktoren während des Etablierungsprozesses erschweren jedoch deren Implementierung in praktische Zuchtprogramme. Hier treten neuere molekulargenetische Methoden, wie das „Gene Editing“ auf den Plan. Beide Ansätze bringen grundsätzlich pros und contras mit sich, die in der vorliegenden Arbeit besprochen werden. Hierbei werden die wichtigsten Infektionskrankheiten beim Schwein, aufgeteilt nach Allgemeinerkrankungen und Tierseuchen, Erkrankungen des Respirations- und Digestionstrakts und des Immunsystems berücksichtigt.

Abstract

Demands for health, performance and welfare in pigs, as well as the desire for consumer protection and reduced antibiotic use, require optimal measures in advance of disease development. This includes, in principle, the use of genetically more resistant lines and breeding animals, whose existence has been proven for a wide range of pathogen-host interactions. In addition, attempts are being made to identify the gene variants responsible for disease resistance in order to force the selection of suitable populations, also using modern biotechnical technics. The present work is intended to provide an overview of the research status achieved in this context and to highlight opportunities and risks for the future.

The evaluation of the international literature shows that genetic disease resistance exist in many areas of swine diseases. However, polygenic inheritance, lack of animal models and the influence of environmental factors during evaluation render their implementation in practical breeding programs demanding. This is where modern molecular genetic methods, such as Gene Editing, come into play. Both approaches possess their pros and cons, which are discussed in this paper. The most important infectious diseases in pigs, including general diseases and epizootics, diseases of the respiratory and digestive tract and diseases of the immune system are taken into account.



Publication History

Received: 09 November 2021

Accepted: 26 January 2022

Article published online:
02 March 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Van Oirschot JT. Vaccination in food animal productions. Vaccine 1994; 12: 415-418
  • 2 Reiner G. Investigations on genetic disease resistance in swine – a contribution to reduction of pain, suffering and damage in farm animals. Appl Anim Behav Sci 2009; 118: 217-221
  • 3 Vögeli PE, Meijerink R, Fries S. et al. A molecular test for the detection of E. coli F18 receptors: a breakthrough in the struggle against edema disease and post-weaning diarrhoea. Schweizer Arch Tierheilk 1997; 139: 479-484
  • 4 Meijerink ER, Fries R, Vögeli P. et al. Two a(1,2) fucosyltransferase genes on porcine hromosome 6q11 are closely linked to the blood group inhibitor (S) and Escherichia coli F18 receptor (ECF18R) loci. Mammalian Genome 1997; 8: 736-741
  • 5 Jorgensen CB, Cirera S, Anderson SI. et al. Linkage and comparative mapping of the locus controlling susceptibility towards E-coli F4ab/ac diarrhoea in pigs. Cytogen Genome Res 2003; 102: 157-162
  • 6 Madden KB, Murrel KD, Lunney JK. Trichinella spiralis: Major histocompatibility complex-associated elimination of encysted muscle larvae in swine. Exp Parasitol 1990; 70: 443-451
  • 7 Wakelin D. Genetic control of susceptibility and resistance to parasitic infection. Adv Parasitol 1978; 16: 219-308
  • 8 Skallerup P, Thamsborg SM, Jorgensen CB. et al. Functional study of a genetic marker allele associated with resistance to Ascaris suum in pigs. Parasitology 2014; 141: 777-787
  • 9 Skallerup P, Thamsborg SM, Jørgensen CB. et al. Detection of a quantitative trait locus associated with resistance to infection with Trichuris suis in pigs. Vet Parasitol 2015; 210: 264-269
  • 10 Reiner G, Melchinger E, Kramarova M. et al. Detection of quantitative trait loci for resistance/susceptibility to pseudorabies virus in swine. J Gen Virol 2002; 83: 167-172
  • 11 Reiner G, Kliemt D, Willems H. et al. Mapping of quantitative trait loci affecting resistance/susceptibility to Sarcocystis miescheriana in swine. Genomics 2007; b 89: 638-646
  • 12 Mengeling WL, Cutlip RC. Pathogenecity of field isolants of Hemagglutinating encephylomyelitis virus for neonatal pigs. J Am Vet Med Assoc 1993; 168: 236-239
  • 13 Martins CLV, Lawman MJP, Scholl T. et al. African Swine Fever Virus specific porcine cytotoxic T-cell activity. Arch Virol 1993; 129: 211-225
  • 14 Müller M, Brenig B, Winnacker EL. et al. Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein which confers resistance to influenza virus infection. Gene 1992; 121: 263-270
  • 15 Meeker DL, Rothschild MF, Christian LL. et al. Genetic control of immune response to pseudorabies and atrophic rhinitis vaccines : I. Heterosis, general combining ability and relationship to growth and backfat. J Animal Sci 1987; a 64: 407-413
  • 16 Meeker DL, Rothschild MF, Christian LL. et al. Genetic control of immune response to pseudorabies and atrophic rhinitis vaccines : II. Comparison of additive direct and maternal genetic effects. J Animal Sci 1987; b 64: 414-419
  • 17 Donaldson AI, Alexandersen S. Relative resistance of pigs to infection by natural aerosols of FMD virus. Vet Rec 2001; 148: 600-602
  • 18 Opriesnig T, Fenaux TM, Thomas P. Evidence of breed-dependent differences in susceptibility to porcine circovirus type-2 associated disease and lesions. Vet Pathol 2006; 43: 281-293
  • 19 Halbur P, Rothschild MF, Thacker B. Differences in susceptibility of Duroc, Hampshire and Meishan pigs to infection with a highvirulence strain (VR2385) of porcine reproductive and respiratory syndrome virus (PRRS). J Anim Breed Genet 1998; 115: 181-189
  • 20 Niewold TA, Veldhuizen EJA, van der Meulen J. et al. The early transcriptional response of pig small intestinal mucosa to invasion by Salmonella enterica serovar typhimurium DT104. Mol Immunol 2007; 44: 1316-1322
  • 21 Cameron HS, Hughe EH, Gregory PW. Genetic resistance to brucellosis in swine. J Anim Sci 1942; 1: 106-110
  • 22 Hutt FB. Genetic resistance to disease in domestic animals. Ithaca, N. Y.: Comstock Publishers; 1958
  • 23 Wilkinson JM, Sargent CA, Galina-Pontoja L. et al. Gene expression profiling in the lungs of pigs with different susceptibilities to Glasser’s disease. BMC Genomics 2010; 11: 455
  • 24 Hoeltig D, Hennig-Pauka I, Thies T. et al. A novel respiratory health score supports the role of acute lung damage and pig breed in the course of an Actinobacillus pleuropneumoniae infection. BMC Vet Res 2009; 5: 14
  • 25 Shimazu T, Borjigin L, Katayama Y. et al. Genetic selection for resistance to mycoplasmal pneumonia of swine (MPS) in the Landrace line influences the expression of soluble factors in blood after MPS vaccine sensitization. Anim Sci J 2014; 85: 365-373
  • 26 Wu H, Gaur U, Mekchay S. et al. Genome-wide identification of allele-specific expression in response to Streptococcus suis 2 infection in two differentially susceptible pig breeds. J Appl Genet 2015; 56: 481-491
  • 27 Bishop S, Woolliams J A. Genomics and disease resistance studies in livestock. Livest Sci 2014; 166: 190-198
  • 28 Bishop SC, Stear MJ. Modeling of host genetics and resistance to infectious diseases: Understanding and controlling nematode infections. Vet Parasitol 2003; 115: 147-166
  • 29 Bishop S. A consideration of resistance and tolerance for ruminant nematode infections. Front Genet 2012; 3: 168
  • 30 Wilkie B, Mallard B. Selection for high immune response: An alternative approach to animal health maintenance?. Vet Immunol Immunopathol 1999; 72: 231-235
  • 31 Albers GA, Gray GD, Piper LR. et al. The genetics of resistance and resilience to Haemonchus contortus infection in young merino sheep. Int J Parasito 1987; 17: 1355-1363
  • 32 Bisset SA, Morris CA. Feasibility and implications of breeding sheep for resilience to nematode challenge. Int J Parasitol 1996; 26: 857-868
  • 33 Doeschl-Wilson AB, Villanueva B, Kyriazakis I. The first step toward genetic selection for host tolerance to infectious pathogens: obtaining the tolerance phenotype through group estimates. Front Genet 2012; 3: 265
  • 34 Mulder HA, Rashidi H. Selection on resilience improves disease resistance and tolerance to infections. J Anim Sci 2017; 95: 3346-3358
  • 35 Putz AM, Harding JCS, Dyck MK. et al. Novel resilience phenotypes using feed intake data from a natural disease challenge model in wean-to-finish pigs. Front Genet 2019; 9: 660
  • 36 Cheng J, Putz AM, Harding JCS. Genetic analysis of disease resilience in wean-to-finish pigs from a natural disease challenge model. J Anim Sci 2020; 98: 1-14
  • 37 Fu WX, Liu Y, Lu X. et al. A genome-wide association study identifies two novel promising candidate genes affecting Escherichia coli F4ab/F4ac susceptibility in swine. PLoSOne 2012; 7: e32127
  • 38 Sorensen KK, Gregersen VR, Christensen OF. et al. Genomic regions associated with ventro-cranial chronic pleuritis in pig. J Anim Breed Genet 2011; 128: 314-318
  • 39 Schook LB, Beever JE, Rogers J. et al. Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Comp Funct Genom 2005; 6: 251-255
  • 40 Hedegaard J, Skovgaard K, Mortensen S. et al. Molecular characterisation of the early response in pigs to experimental infection with Actinobacillus pleuropneumoniae using cDNA microarrays. Acta Vet Scand 2007; 49: 11
  • 41 Tuemmler B, Gerlach G. Fugato-Konsortium. Development of genetic markers in pigs for host defense of airborne infections – Update on the FUGATO-project IRAS. Züchtungskunde 2009; 81: 27-35
  • 42 Laible G, Wei J, Wagner S. Improving livestock for agriculture – technological progress from random transgenesis to precision genome editing heralds a new era. Biotechn J 2015; 10: 109-120
  • 43 Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346: 1258096-1
  • 44 Mali P, Aach J, Benjamin Stranges P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechn 2013; 31: 833-838
  • 45 Garneau JE, Dupuis M-E, Villion M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468: 67-71
  • 46 Reiner G. Genetic resistance – an alternative for controlling PRRS?. Porcine Health Management 2016; 2: 27
  • 47 Blome S, Franzke K, Beer M. African swine fever—a review of current knowledge. Virus Research 2020; 287: 198099
  • 48 Sanchez-Vizcaino JM, Mur L, Gomez-Villamandos JC. et al. An update on the epidemiology and pathology of African swine fever. J Comp Pathol 2015; 152: 9-21
  • 49 Pikalo JME, Schoder J, Sehl A. et al. The African swine fever virus isolate Belgium 2018/1 shows high virulence in European wild boar. Transboundary and Emerging Diseases 2020; 67: 1654-1659
  • 50 Netherton CL, Connell S, Benfield CTO. et al. The Genetics of Life and Death: Virus-Host Interactions Underpinning Resistance to African Swine Fever, a Viral Hemorrhagic Disease. Front Genet 2019; 10
  • 51 Palgrave CJ, LU ZH, Lowden CS. et al. Species-specific variation in RELA underlies differences in NF-kappaB activity: a potential role in African swine fever pathogenesis. J Virol 2011; 85: 6008-6014
  • 52 Mitchell JP, Carmody RJ. NF-kappaB and the Transcriptional Control of Inflammation. Int Rev Cell Mol Biol 2018; 335: 41-84
  • 53 Caamano J, Hunter CA. NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev 2002; 15: 414-429
  • 54 Revilla Y, Callejo M, Rodriguez JM. et al. Inhibition of nuclear factor kappaB activation by a virus-encoded IkappaB-like protein. J Biol Chem 1998; 273: 5405-5411
  • 55 Powell PP, Dixon LK, Parkhouse RM. An IkappaB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J Virol 1996; 70: 8527-8533
  • 56 Lillico SG, Proudfoot C, King TJ. et al. Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci Rep 2016; 6: 21645
  • 57 McCleary S, Strong R, McCarthy RR. et al. Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus. Sci Rep 2020; 10: 8951
  • 58 Eblé PL, Hagenaars TJ, Weesendorp E. et al. Transmission of African swine fever virus via carrier survivor pigs does occur. Vet Microbiol 2019; 237: 108345
  • 59 Ståhl K, Sternberg-Lewerin S, Blome S. et al. Lack of evidence for long term carriers of African swine fever virus—asystematic review. Virus Res 2019; 272: 197725
  • 60 Lu X, Gong YF, Liu JF. et al. Mapping quantitative trait loci for the lysozyme level and immunoglobulin G blocking percentage of classical swine fever virus. Genet Mol Res 2014; 13: 283-290
  • 61 Wang SJ, Liu WJ, Sargent CA. et al. Effects of the polymorphisms of Mx1, BAT2 and CXCL12 genes on immunological traits in pigs. Mol Biol Rep 2012; 39: 2417-2427
  • 62 Xie Z, Pang D, Yuan H. et al. Genetically modified pigs are protected from classical swine fever virus. PLOS Pathog 2018; 14: e1007193
  • 63 Liu C, Li M, Yin X. et al. Complete genome sequences of three sub-genotype 2.1b isolates of classical swine fever virus in China. Vet Res 2018; 62: 7
  • 64 Jinek M, Dudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature 2009; 457: 405-412
  • 65 Baskerville A, McFerran JB, Dow C. Aujeszky’s disease in pigs. Vet Bull 1973; 43: 465-480
  • 66 Hessing MJ, Scheepens CJ, Schouten WG. et al. Social rank and disease susceptibility in pigs. Vet Immunol Immunopathol 1994; 43: 373-387
  • 67 Hessing MJ, Coenen GJ, Vaiman M. et al. Individual differences in cell-mediated and humoral immunity in pigs. Vet Immunol Immunopathol 1995; 45: 97-113
  • 68 Rothschild MF, Hill HT, Christian LL. et al. Genetic differences in serum-neutralization titers of pigs after vaccination with pseudorabies modified live-virus vaccine. Am J Vet Res 1984; 45: 1216-1218
  • 69 Huang Y, Li Z, Song C. et al. Resistance to pseudorabies virus by knockout of nectin1/2 in pig cells. Arch Virol 2020; 165: 2837-2846
  • 70 Huang J, Qi Y, Wang A. et al. Porcine β-defensin 2 inhibits proliferation of pseudorabies virus in vitro and in transgenic mice. Virol J 2020; 17: 18
  • 71 Opriessnig T, Patterson AR, Madson DM. et al. Difference in severity of porcine circovirus type two-induced pathological lesions between landrace and pietrain pigs1. J Anim Sci 2009; 87: 1582-1590
  • 72 Lopez-Soria S, Segales J, Nofrarias M. et al. Genetic influence on the expression of PCV disease. Vet Rec 2004; 155 (16) 504
  • 73 Sanglard LP, PigGen Canada, Mote BE. et al. Genomic Analysis of IgG Antibody Response to Common Pathogens in Commercial Sows in Health-Challenged Herds. Front Genet 2020; 11: 593804
  • 74 McKnite AM, Bundy JW, Moural TW. et al. Genomic analysis of the differential response to experimental infection with porcine circovirus 2b. Anim Gen 2014; 45 (02) 205-214
  • 75 Meerts P, Misinzo G, McNeilly F. et al. Replication kinetics of different porcine circovirus 2 strains in PK-15 cells, fetal cardiomyocytes and macrophages. Arch Virol 2005; 150: 427-441
  • 76 Wei R, Trus I, Yang B. et al. Breed Differences in PCV2 Uptake and Disintegration in Porcine Monocytes. Viruses 2018; 10: 562
  • 77 Reiner G. MicroRNA (miRNA): seminal biomarkers for disease diagnostics in swine?. Berl Münch Tierarztl Wschr 2011; 124: 10-15
  • 78 He T, Feng G, Chen H. et al. Identification of host encoded microRNAs interacting with novel swine-origin influenza A (H1N1) virus and swine influenza virus. Bioinformation 2009; 4: 112-118
  • 79 Anselmo A, Flori L, Jaffrezic F. et al. Co-Expression of Host and Viral MicroRNAs in Porcine Dendritic Cells Infected by the Pseudorabies Virus. PLoS One 2011; 6: e17374
  • 80 Loveday E-K, Svinti V, Diederich S. et al. Temporal- and Strain-Specific Host MicroRNA Molecular Signatures Associated with Swine-Origin H1N1 and Avian-Origin H7N7 Influenza A Virus Infection. J Virol 2012; 86: 6109-6122
  • 81 Zhang P, Wang L, Li Y. et al. Identifcation and characterization of microRNA in the lung tissue of pigs with diferent susceptibilities to PCV2 infection. Vet Res 2018; 49: 18
  • 82 Walker LR. 2018. Dissection of QTL on Host Chromosome 12 Uncovers Candidate Gene and Missense Polymorphism Associated with Porcine Circovirus 2 Susceptibility. (Master’s thesis). University of Nebraska; Lincoln, NE:
  • 83 Miller LC, Fleming DS, Lager KM. Comparison of the Transcriptome Response within the Swine Tracheobronchial Lymphnode Following Infection with PRRSV, PCV-2 or IAV-S. Pathogens 2020; 9 (02) 99
  • 84 UniProt C. UniProt: A hub for protein information. Nucleic Acids Res 2015; 43: D204-D212
  • 85 Joshi T, Butchar J, Tridandapani S. Fcγ Receptor Signaling in Phagocytes. Int J Hematol 2006; 84: 210-216
  • 86 Engle TB, Jobman EE, Moural TW. et al. Variation in time and magnitude of immune response and viremia in experimental challenges with Porcine circovirus 2b. BMC Vet Res 2014; 10 (01) 286
  • 87 Sun Q, Qi X, Zhang Y. et al. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs. J Biol Chem 2016; 291 (31) 16138-16149
  • 88 Chen Y, Song T, Xiao YL. et al. Enhancement of immune response of piglets to PCV-2 vaccine by porcine IL-2 and fusion IL-4/6 gene entrapped in chitosan nanoparticles. Res Vet Sci 2018; 117: 224-232
  • 89 Li Y, Liu H, Wang P. et al. RNA-Seq Analysis Reveals Genes Underlying Different Disease Responses to Porcine Circovirus Type 2 in Pigs. PLoS ONE 2016; 11 (05) e0155502
  • 90 Kreikemeier CA, Engle TB, Lucot KL. et al. Genome-wide analysis o TNF-α response in pigs challenged with porcine circovirus 2b. Anim Gen 2015; 46: 205-208
  • 91 Zhang H, Liu C, Cheng S. et al. Porcine CD74 is involved in the inflammatory response activated by nuclear factor kappa B during porcine circovirus type 2 (PCV-2) infection. Arch Virol 2013; 158: 2285-2295
  • 92 Hasslung FC, Berg M, Allan GM. et al. Identification of a sequence from the genome of porcine circovirus type 2 with an inhibitory effect on IFN-α production by porcine PBMCs. J Gen Virol 2003; 84: 2937-2945
  • 93 Andersson L, Georges M. Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet 2004; 5: 202-212
  • 94 Asano A, Ko JH, Morozumi T. et al. Polymorphisms and the antiviral property of porcine MX1 protein. J Vet Medic Sci 2002; 64: 1085-1089
  • 95 Arceo ME, Ernst CW, Lunney JK. et al. Characterizing differential individual response to porcine reproductive and respiratory syndrome virus infection through statistical and functional analysis of gene expression. Front Genet 2012; 3: 321
  • 96 Lowe JE, Husmann R, Firkins LD. et al. Correlation of cell-mediated immunity against porcine reproductive and respiratory syndrome virus with protection against reproductive failure in sows during outbreaks of porcine reproductive and respiratory syndrome in commercial herds. J Am Vet Med Assoc 2005; 226: 1707-1711
  • 97 Petry DB, Holl JW, Weber JS. et al. Biological responses to porcine respiratory and reproductive syndrome virus in pigs of two genetic populations. J Anim Sci 2005; 83: 1494-1502
  • 98 Vincent AL, Thacker BJ, Halbur PG. et al. In vitro susceptibility of macrophages to porcine reproductive and respiratory syndrome virus varies between genetically diverse lines of pigs. Viral Immunol 2005; 18: 506-512
  • 99 Vincent AL, Thacker BJ, Halbur PG. et al. An investigation of susceptibility to porcine reproductive and respiratory syndrome virus between two genetically diverse commercial lines of pigs. J Anim Sci 2006; 84: 49-57
  • 100 Doeschl-Wilson AB, Kyriazakis I, Vincent A. et al. Clinical and pathological responses of pigs from two genetically diverse commercial lines to porcine reproductive and respiratory syndrome virus infection. J Anim Sci 2009; 87: 1638-1647
  • 101 Reiner G, Willems H, Pesch S. et al. Variation in resistance to the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in Pietrain and Miniature pigs. J Anim Breed Genet 2010; 127: 100-106
  • 102 Ait-Ali T, Wilson AD, Westcott DG. et al. Innate immune response to replication of porcine reproductive and respiratory syndrome virus in isolated swine alveolar macrophages. Viral Immunol 2007; 20: 105-118
  • 103 Haley CS, Andersson L. Linkage mapping of quantitative trait loci in plants and animals. In: Dear PH. editor Genome mapping. Oxford: IRL Press; 1997. p. 49-71
  • 104 Boddicker N, Waide EH, Rowland RR. et al. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J Anim Sci 2012; 90: 1733-1746
  • 105 Boddicker NJ, Bjorkquist A, Rowland RR. et al. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genet Sel Evol 2014; 46: 18
  • 106 Boddicker NJ, Garrick DJ, Rowland RR. et al. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Anim Genet 2013; 45: 48-58
  • 107 Serao NVL, Kemp RA, Mote BE. et al. Genetic and genomic basis of antibody response to porcine reproductive and respiratory syndrome (PRRS) in gilts and sows. Genet Sel Evol 2016; 48: 51
  • 108 Schroyen M, Steibel JP, Koltes JE. et al. Whole blood microarray analysis of pigs showing extreme phenotypes after a porcine reproductive and respiratory syndrome virus infection. BMC Genom 2015; 16: 516
  • 109 Schroyen M, Eisley C, Koltes JE. et al. Bioinformatic analyses in early host response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) reveals pathway differences between pigs with alternate genotypes for a major host response QTL. BMC Genomics 2016; 17: 196
  • 110 Lunney JK, Fang Y, Ladinig A. et al. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and interaction with the immune system. Annu Rev Anim Biosci 2016; 4: 15.1-15.26
  • 111 Koltes JE, Fritz-Waters E, Eisley CJ. et al. Identification of a putative quantitative trait nucleotide in guanylate binding protein 5 for host response to PRRS virus infection. BMC Genomics 2015; 16: 412
  • 112 Biasini M, Bienert S, Waterhouse A. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucl Acids Res 2014; 42: W252-W258
  • 113 Khatun A, Nazki S, Jeong CG. et al. Effect of polymorphisms in porcine guanylate-binding proteins on host resistance to PRRSV infection in experimentally challenged pigs. Vet Res 2020; 51: 14
  • 114 Dunkelberger JR, Serao NV, Niederwerder MC. et al. Effect of a major quantitative trait locus for porcine reproductive and respiratory syndrome (PRRS) resistance on response to coinfection with PRRS virus and porcine circovirus type 2b (PCV2b) in commercial pigs, with or without prior vaccination for PRRS. J Anim Sci 2017; 95: 584-598
  • 115 Sang Y, Rowland RRR, Blecha F. Porcine type I interferons: polymorphic sequences and activity against PRRSV. BMC Proc 2011; 5 (Suppl. 04) 58
  • 116 Li Y, Liang S, Liu H. et al. Identification of a short interspersed repetitive element insertion polymorphism in the porcine Mx1 promoter associated with resistance to porcine reproductive and respiratory syndrome virus infection. Anim Genet 2015; 46: 437-440
  • 117 Zhang X, Shin J, Molitor TW. et al. Molecular responses of macrophages to porcine reproductive and respiratory syndrome virus infection. Virology 1999; 262: 152-162
  • 118 Li Y, Sun Y, Xiang F. et al. Identification of a single nucleotide polymorphism regulating the transcription of ubiquitin specific protease 18 gene related to the resistance t porcine reproductive and respiratory syndrome virus infection. Vet Immunol Immunopathol 2014; 162: 65-71
  • 119 Jia X, Bi Y, Li J. et al. Cellular microRNA miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by activating innate antiviral immunity. Sci Rep 2015; 5: 10651
  • 120 Li X, Galliher-Beckley A, Pappan L. Comparison of Host Immune Responses to Homologous and Heterologous Type II Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Challenge in Vaccinated and Unvaccinated Pigs Biomed Res Int. 2014: 416727
  • 121 Zhang QZ, Yoo DW. PRRS virus receptors and their role for pathogenesis. Vet Microbiol 2015; 177: 229-241
  • 122 Whitworth KM, Rowland RRR, Ewen CL. et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotech 2016; 34: 20-22
  • 123 Burkard C, Lillico SG, Reid E. et al. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLOS Pathogens 2017; 13: e1006206
  • 124 Wang H, Shen L, Chen J. et al. Deletion of CD163 Exon 7 Confers Resistance to Highly Pathogenic Porcine Reproductive and Respiratory Viruses on Pigs. Int J Biol Sci 2019; 15: 1993-2005
  • 125 Chen J, Wang H, Bai J. et al. Generation of Pigs Resistant to Highly Pathogenic-Porcine Reproductive and Respiratory Syndrome Virus through Gene Editing of CD163. Int J Biol Sci 2019; 15: 481-492
  • 126 Le Bon A, Tough DF. Links between innate and adaptive immunity via type I interferon. Curr Op Immunol 2002; 14: 432-436
  • 127 Nakajima E, Morozumi T, Tsukamoto K. et al. A naturally occurring variant of porcine Mx1 associated with increased susceptibility to influenza virus in vitro. Biochem Genet 2007; 45 (01/02) 11-24
  • 128 Palm M, Leroy M, Thomas A. et al. Differential antiinfluenza activity among allelic variants at the Sus scrofa Mx1 locus. J Interf Cytokine Res 2007; 27 (02) 147-155
  • 129 Stoppani E, Bassi I, Dotti S. et al. Expression of a single siRNA against a conserved region of NP gene strongly inhibits in vitro replication of different Influenza A virus strains of avian and swine origin. Antivir Res 2015; 120: 16-22
  • 130 Lyall J, Irvine RM, Sherman A. et al. Suppression of avian influenza transmission in genetically modified chickens. Science 2011; 331 (6014) 223-226
  • 131 Varki A, Gagneux P. Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci 2012; 1253 (01) 16-36
  • 132 Staller E, Sheppard CM, Neasham PJ. et al. ANP32 proteins are essential for influenza virus replication in human cells. J Virol 2019; JVI.00217–19
  • 133 Peacock TP, Swann OC, Salvesen HA. et al. Swine ANP32A supports avian influenza virus polymerase. J Virol 2020; 94: e00132-20
  • 134 Staller E, Baillon L, Frise R. et al. A rare variant in Anp32B impairs influenza virus replication in human cells. bioRxiv. 2020 04.06.027482.
  • 135 Salvesen HA, Whitelaw CBA. Current and prospective control strategies of influenza A virus in swine. Porc Health Manag 2021; 7: 23
  • 136 Jones JET. The incidence and nature of diseases causing death in pigs aged 2–7 month in a commercial herd. Br Vet J 1968; 125: 492-505
  • 137 Lundeheim N. Genetic analysis of respiratory diseases in pigs. Acta Agric Scand 1979; 29 (03) 209-215
  • 138 Jorgensen B. Group-level effects of breed and sire on diseases and influence of diseases on performance of pigs in Danish test stations. Prev Vet Med 1992; 14 (03/04) 281-292
  • 139 Ni L, Song C, Wu X. et al. RNA-seq transcriptome profiling of porcine lung from two pig breeds in response to Mycoplasma hyopneumoniae infection. PeerJ 7: e7900
  • 140 Fang X, Zhao W, Fu Y. et al. Difference in susceptibility to Mycoplasma pneumonia among various pig breeds and its molecular genetic basis. Scientia Agricultura Sinica 2015; 48 (14) 2839-2847
  • 141 Maingi JW, Xiong QY, Wei YN. et al. STAT3 regulates ABCA3 expression and influences lamellar body formation in alveolar type II cells. Am J Resp Cell Mol Biol 2008; 38: 551-558
  • 142 Okamura T, Onodera W, Tayama T. et al. A genome-wide scan for quantitative trait loci affecting respiratory disease and immune capacity in Landrace pigs. Anim Genetics 2012; 43 (06) 721-729
  • 143 Almeida HMS, Mechler-Dreibi ML, Sonálio K. et al. Cytokine expression and Mycoplasma hyopneumoniae burden in the development of lung lesions in experimentally inoculated pigs. Vet Microbiol 2020; 244: 108647
  • 144 Huang X, Huang T, Deng W. et al. Genome-wide association studies identify susceptibility loci affecting respiratory disease in chinese erhualian pigs under natural conditions. Anim Genetics 2016; 48 (01) 30-37
  • 145 Sousa KRS, Ribeiro AMF, Goes PRN. et al. Toll-Like Receptor 6 differential expression in two pig genetic groups vaccinated against Mycoplasma hyopneumoniae. BMC Proceedings 2011; 5 (04) S9
  • 146 Misch EA, Hawn TR. Toll-like receptor polymorphisms and susceptibility to human disease. ClinSci (Lond) 2008; 114: 347-360
  • 147 Li X, Zhang Y, Yin B. et al. Toll-Like Receptor 2 (TLR2) and TLR4 Mediate the IgA Immune Response Induced by Mycoplasma hyopneumoniae. Infect Immun 2020; 88 (01) e00697-19
  • 148 Borjigin L, Shimazu T, Katayama Y. et al. Immunogenic properties of Landrace pigs selected for resistance to mycoplasma pneumonia of swine. Anim Sci J 2016; 87: 321-329
  • 149 Blanc F, Maroilley T, Revilla M. et al. Infuence of genetics and the pre-vaccination blood transcriptome on the variability of antibody levels after vaccination against Mycoplasma hyopneumoniae in pigs. Genet Sel Evol 2021; 53: 24
  • 150 Grabner S, Egerbacher M, Gasse H. et al. Detection of PR-39, a porcine host defence peptide, in different cell sub-linages in pigs infected with Actinobacillus pleuropneumoniae. Histol Histopathol 2017; 32: 1077-1088
  • 151 Busley D, Ochs M, Hoeltig D. et al. Characterization of surfactant alterations in pigs infected with Actinobacillus pleuropneumoniae. Experimental Lung Research 2016; 42: 1-13
  • 152 Chiers K, De Waele T, Pasmans F. et al. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Vet Res 2010; 41: 65
  • 153 Reiner G, Bertsch N, Hoeltig D. et al. Identifcation of QTL affecting resistance/susceptibility to acute Actinobacillus pleuropneumoniae infection in swine. Mamm Genome 2014; 25: 180-191
  • 154 Reiner G, Dreher F, Drungowski M. et al. Pathway deregulation and expression QTLs in response to Actinobacillus pleuropneumoniae infection in swine. Mamm Genome 2014; 25: 600-617
  • 155 Ohya M, Nishitani C, Sano H. et al. Human pulmonary surfactant protein D binds the extracellular domains of Toll-like receptors 2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry 2006; 45: 8657-8664
  • 156 Yamada C, Sano H, Shimizu T. et al. Surfactant protein a directly interacts with TLR4 and MD-2 and regulates inflammatory cellular response importance of supratrimeric oligomerization. J Biol Chem 2006; 281: 21771-21780
  • 157 Chroneos Z, Sever-Chroneos Z, Shepherd V. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 2010; 25: 13-26
  • 158 Xu Y, Ikegami M, Wang Y. et al. Gene expression and biological processes influenced by deletion of Stat3 in pulmonary type II epithelial cells. BMC genomics 2007; 8: 455
  • 159 Hokuto I, Ikegami M, Yoshida M. et al. Stat-3 is required for pulmonary homeostasis during hyperoxia. J Clin Invest 2004; 113: 28-37
  • 160 Park HS, Kim SR, Lee YC. Impact of oxidative stress on lung diseases. Respirology 2009; 14: 27-38
  • 161 Ryckman C, Vandal K, Rouleau P. et al. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol 2003; 170: 3233-3242
  • 162 Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004; 75: 39-48
  • 163 Bowler RP, Nicks M, Tran K. et al. Extracellular superoxide dismutase attenuates lipopolysaccharide-induced neutrophilic inflammation. Am J Respir Cell Molec Biol 2004; 31: 432-439
  • 164 Haddad JJ. Science review: redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for nuclear factor-κB. Crit Care 2002; 6: 481
  • 165 Reddi AR, Jensen LT, Naranuntarat A. et al. The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radic Biol Med 2009; 46: 154
  • 166 Privratsky JR, Tilkens SB, Newman DK. et al. PECAM-1 dampens cytokine levels during LPS-induced endotoxemia by regulating leukocyte trafficking. Life Sci 2012; 90: 177-184
  • 167 DeLisser HM, Christofidou-Solomidou M, Strieter RM. et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 1997; 151: 671
  • 168 Nietfeld F, Höltig D, Willems H. et al. Candidate genes and gene markers for the resistance to porcine pleuropneumonia. Mamm Genome 2020; 31: 54-67
  • 169 Burciaga Nava JA. Interacción in vitro de Actinobacillus pleuropneumoniae con células endoteliales de aorta de cerdo. Thesis, Universidad Autonóma de Aguascalientes, Centro de Ciencias Básicas; 2008
  • 170 Enríquez-Verdugo I, Guerrero AL, Serrano JJ. et al. Adherence of Actinobacillus pleuropneumoniae to swine-lung collagen. Microbiology 2004; 150: 2391-2400
  • 171 Huang J, Yang X, Wang A. et al. Pigs Overexpressing Porcine β-Defensin 2 Display Increased Resilience to Glaesserella parasuis Infection. Antibiotics 2020; 9: 903
  • 172 Chen H, Li C, Fang M. et al. Understanding Haemophilus parasuis infection in porcine spleen through a transcriptomics approach. BMC Genomics 10: 64 2009;
  • 173 Wang Y, Liu C, Fang Y. et al. Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis. BMC Genomics 2012; 13: 68
  • 174 Fu S, Guo J, Li R. et al. Transcriptional Profiling of Host Cell Responses to Virulent Haemophilus parasuis: New Insights into Pathogenesis. Int J Mol Sci 2018; 19 (05) 1320
  • 175 Sousa KRS, Ribeiro AMF, Dantas WMF. et al. Comparison of gene expression of Toll-like receptors and cytokines between Piau and Commercial line (Landrace × Large White crossbred) pigs vaccinated against Pasteurella multocida type D. Res Vet Sci 2017; 114: 273-280
  • 176 Sacco RE, Nicholson TL, Waters TE. et al. Porcine TLR3 characterization and expression in response to influenza virus and Bordetella bronchiseptica. Vet Immun Immunopath 2011; 142 (01/02) 57-63
  • 177 Wang HX, Garcia RS, Cox E. Porcine Enterotoxigenic Escherichia coli strains differ in their capacity to secrete enterotoxins through varying YghG levels. Appl Environ Microbiol 2020; 86: e00523-20
  • 178 Fu W-X, Liu Y, Lu X. et al. A Genome-Wide Association Study Identifies Two Novel Promising Candidate Genes Affecting Escherichia coli F4ab/F4ac Susceptibility in Swine. PLoS ONE 2012; 7: e32127
  • 179 Goetstouwers T, Van Poucke M, Coppieters W. et al. Refined Candidate Region for F4ab/ac Enterotoxigenic Escherichia coli Susceptibility Situated Proximal to MUC13 in Pigs. PLoS ONE 2014; 9: e105013
  • 180 Liu Y, Fu WX, Wang WW. et al. A novel12bpdeletionintheITGB5geneisstronglyassociated with Escherichia coli F4ac adhesion and increased susceptibility to infection in pigs. Livestock Sci 2015; 172: 1-4
  • 181 Wang WW, Liu Y, Tang H. et al. ITGB5 plays a key role in Escherichia coli F4ac-induced diarrhea in piglets. Front Immunol 2019; 10: 2834
  • 182 Van Diemen P, Kreukniet M, Galina L. et al. Characterisation of a resource population of pigs screened for resistance to salmonellosis. Vet Immunol Immunopathol 2002; 88: 183-196
  • 183 Shinkai H, Suzuki R, Akiba M. et al. Porcine Toll-like receptors: recognition of Salmonella enterica serovar Choleraesuis and influence of polymorphisms. Mol Immunol 2011; 48: 1114-1120
  • 184 Kich JD, Uthe JJ, Benavides MV. et al. TLR4 single nucleotide polymorphisms (SNPs) associated with Salmonella shedding in pigs. J Appl Genet 2014; 55: 267-271
  • 185 Ainslie-Garcia MH, Farzan A, Jafarikia M. et al. Single nucleotide variants in innate immune genes associated with Salmonella shedding and colonization in swine on commercial farms. Vet Microbiol 2018; 219: 171-177
  • 186 Schut CH, Farzan A, Fraser RS. et al. Identification of single-nucleotide variants associated with susceptibility to Salmonella in pigs using a genome-wide association approach. BMC Vet Res 2020; 16: 38
  • 187 Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nature Rev Immunol 2008; 8: 889-895
  • 188 Ayres JS, Schneider DS. Tolerance of infections. Ann Rev Immunol 2012; 30: 271-294
  • 189 Bertolini F, Harding JCS, Mote B. et al. Genomic investigation of piglet resilience following porcine epidemic diarrhea outbreaks. Animal Genet 2016; 48: 228-232
  • 190 Nejsum P, Roepstorff A, Jrgensen CB. et al. High heritability for Ascaris and Trichuris infection levels in pigs. Heredity 2009; 102: 357-364
  • 191 Johnsen JC, Steward TB, Hale OM. Differential responses of Duroc, Hampshire and Crossbred Pigs to a superimposed experimental with the intestinal treadworm strongyloides ransomi. J Parasitol 1975; 61 (03) 517-524
  • 192 Yu YM, Cho YM, Youn YN. et al. Quantitative evaluation of viability- and apoptosis-related genes in Ascaris suum eggs under different culture-temperature conditions. Korean J Parasitol 2012; 50 (03) 243-7
  • 193 Watanabe R, Nakamura H, Masutani H. et al. Anti-oxidative, anti-cancer and anti- inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol Ther 2010; 127: 261-270
  • 194 Skallerup P, Nejsum P, Jørgensen CB. et al. Detection of a quantitative trait locus associated with resistance to Ascaris suum infection in pigs. Int J Parasitol 2012; 42 (04) 383-391
  • 195 Skallerup P, Thamsborg SM, Jørgensen CB. et al. A genetic marker allele conferring resistance to Ascaris suum in pigs. In The nature of parasitism: Joint Spring Symposium 2013, Danish Society for Parasitology and Danish Society for Tropical Medicine & International Health; pp. 16
  • 196 Skallerup P, Nejsum P, Cirera S. et al. Transcriptional immune response in mesenteric lymph nodes in pigs with different levels of resistance to Ascaris suum. Acta Parasit 2017; 62: 141-153
  • 197 Reiner G, Eckert J, Peischl T. et al. Variation in clinical and parasitological traits in Pietrain and Meishan pigs infected with Sarcocystis miescheriana. Vet Parasitol 2002; 106 (02) 99-113
  • 198 Broke AJ, Matika O, Wilson AD. et al. An intronic polymorphism in the porcine IRF7 gene is associated with better health and immunity of the host during Sarcocystis infection, and affects interferon signalling. Anim Genetics 2011; 42 (04) 386-394 [199]
  • 199 Madden KB, Moeller RF, Douglass LW. et al. Trichinella spiralis: Genetic Basis and Kinetics of the Anti-encysted Muscle Larval Response in Miniature Swine. Experim Parasitol 1993; 77 (01) 23-35
  • 200 Urban Jr. JF, Schopf L, Morris SC. et al. Stat6 Signaling Promotes Protective Immunity Against Trichinella spiralis Through a Mast Cell- and T Cell-Dependent Mechanism. J Immunol 2000; 164 (04) 2046-2052
  • 201 Ding J, Bai X, Wang X. et al. Immune Cell Responses and Cytokine Profile in Intestines of Mice Infected with Trichinella spiralis. Front. Microbiol 2017; 8: 2069