Synthesis 2022; 54(11): 2687-2695
DOI: 10.1055/a-1736-8721
paper

Palladium-Catalyzed Semihydrogenation of Alkynes with EtOH: Highly Stereoselective Synthesis of E- and Z-Alkenes

Chengniu Wang
a   Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. of China
,
Jin Dong
a   Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. of China
,
Tingting Li
a   Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. of China
,
Xi Zhao
a   Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, P. R. of China
,
Dawei Xu
b   Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu, P. R. of China
› Author Affiliations
This work was supported in part by grants from the National Natural Science Foundation of China (82001606 to C.N.W., 81901540 to X.Z.), ‘333 Project’ Scientific Research Project of Jiangsu Province (BRA2020204 to D.W.X.), and Key Medical Talents Financial Assistance of Nantong (to D.W.X.).


Abstract

A palladium-catalyzed semihydrogenation of alkynes to E- and Z-alkenes employing EtOH as the hydrogenating agent is reported. The selectivity of the reaction system was effectively controlled by ­ligand/additive and solvent regulation. The use of sodium acetate/­triethanolamine (NaOAc/TEOA), THF, and (1R,2R)-bis[(2-­methoxyphenyl)phenylphosphino]ethane [(R,R)-DIPAMP] in CH3CN was critical for the stereoselective semihydrogenation of alkynes. The general applicability of this procedure was highlighted by the synthesis of more than 36 alkenes, in good yields with high stereoselectivities.

Supporting Information



Publication History

Received: 15 November 2021

Accepted after revision: 11 January 2022

Accepted Manuscript online:
11 January 2022

Article published online:
14 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Sano S, Matsumoto T, Yano T, Toguchi M, Nakao M. Synlett 2015; 26: 2135
    • 1b Umezawa T, Seino T, Matsuda F. Org. Lett. 2012; 14: 4206
    • 1c Aggarwal VK, Fulton JR, Sheldon CG, de Vicente J. J. Am. Chem. Soc. 2003; 125: 6034
    • 1d Maercker A. Org. React. 1965; 14: 270
    • 2a Osborn JA, Jardine FH, Young JF, Wilkinson G. J. Chem. Soc. A. 1966; 1711
    • 2b Huang YM, Wu D, Huang JS, Guo Q, Li J, You JS. Angew. Chem. Int. Ed. 2014; 53: 12158
    • 3a Zhang N, Quan ZJ, Zhang Z, Da Y X, Wang XC. Chem. Commun. 2016; 52: 14234
    • 3b Pawar PM, Jarag KJ, Shankarling GS. Green Chem. 2011; 13: 2130
    • 3c Perkin WH. J. Chem. Soc. 1868; 21: 53
    • 3d Dippy JF. J, Evans RM. J. Org. Chem. 1950; 15: 451
    • 5a Corma A, Iborra S, Velty A. Chem. Rev. 2007; 107: 2411
    • 5b Fouche M, Roone L, Barrett AG. M. J. Org. Chem. 2012; 77: 3060
    • 5c Radkowski K, Sundararaju B, Fürstner A. Angew. Chem. Int. Ed. 2013; 52: 355
    • 5d Srimani D, Diskin-Posner Y, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2013; 52: 14131
    • 5e Johnson NB, Lennon IC, Moran PH, Ramsden JA. Acc. Chem. Res. 2007; 40: 1291
    • 5f Tron GC, Pirali T, Sorba G, Pagliai F, Busacca S, Genazzani AA. J. Med. Chem. 2006; 49: 3033
  • 6 Lindlar H, Dubuis R. Org. Synth. 1966; 46: 89
    • 7a Marvell EN. Li T. Synthesis 1973; 457
    • 7b Brunet J, Gallois P, Caubere P. J. Org. Chem. 1980; 45: 1937
    • 7c Choudary BM, Sharma GV. M, Bharathi P. Angew. Chem. Int. Ed. 1989; 28: 465
    • 7d Choi JC, Yoon NM. Tetrahedron Lett. 1996; 37: 1057
    • 7e Alonso F, Osante I, Yus M. Tetrahedron 2007; 63: 93
    • 7f Hauwert P, Maestri G, Sprengers JW, Catellani M, Elsevier CJ. Angew. Chem. Int. Ed. 2008; 47: 3223
    • 7g Haberberger M, Irran E, Enthaler S. Eur. J. Inorg. Chem. 2011; 2797
    • 7h Qi X, Liu X, Qu LB, Liu Q, Lan Y. J. Catal. 2018; 362: 25
  • 8 Yang YF, Wang CN, Sun YF, Man XY, Li JX, Sun F. Chem. Commun. 2019; 55: 1903
    • 9a Liu Y, Hu L, Chen H, Du H. Chem. Eur. J. 2015; 21: 3495
    • 9b Richmond E, Moran J. J. Org. Chem. 2015; 80: 6922
    • 9c Fu S, Chen N, Liu X, Shao Z, Luo S, Liu Q. J. Am. Chem. Soc. 2016; 138: 8588
    • 10a Garbe M, Budweg S, Papa V, wie Z, Hornke H, Bachmann S, Scalone M, Spannenberg A, Jiao H, Junge K, Beller M. Catal. Sci. Technol. 2020; 10: 3994
    • 10b Liu X, Liu B, Liu Q. Angew. Chem. Int. Ed. 2020; 59: 6750
    • 10c Liu J, Wei Z, Yang J, Ge Y, Wei D, Jackstell R, Jiao H, Beller M. ACS Catal. 2020; 10: 12167
    • 10d Tokmic K, Fout AR. J. Am. Chem. Soc. 2016; 138: 13700
    • 11a Hauwert P, Maestri G, Sprengers JW, Catellani M, Elsevier CJ. Angew. Chem. Int. Ed. 2008; 47: 3223
    • 11b Wagh YS, Asao N. J. Org. Chem. 2015; 80: 847
    • 11c Shibahara F, Mizuno T, Shibata Y, Murai T. Bull. Chem. Soc. Jpn. 2020; 93: 332
    • 11d Fan C, Hou J, Chen YJ, Ding KL, Zhou QL. Org. Lett. 2021; 23: 2074
    • 12a Rej S, Madasu M, Tan CS, Hsia CF, Huang MH. Chem. Sci. 2018; 9: 2517
    • 12b Park BY, Lim T, Han MS. Chem. Commun. 2021; 57: 6891
    • 12c Zhou YP, Mo ZB, Luecke MP, Driess M. Chem. Eur. J. 2018; 24: 4780
  • 13 Luo F, Pan CD, Wang WH, Ye ZS, Cheng J. Tetrahedron 2010; 66: 1399
    • 14a Wang YL, Huang ZD, Huang Z. Nat. Catal. 2019; 2: 529
    • 14b Huang ZD, Wang YL, Leng XB, Huang Z. J. Am. Chem. Soc. 2021; 143: 4824
  • 15 Gong DW, Hu BW, Yang WW, Kong DG, Xia HP, Chen DF. Organometallics 2020;  39: 862
  • 16 Wang CN, Gong SN, Liang ZP, Sun YF, Cheng R, Yang BH, Liu YR, Yang YF, Sun F. ACS Omega 2019; 4: 16045
  • 17 Gieshoff TN, Welther A, Kessler MT, Prechtl MH. G, Jacobi von Wangelin A. Chem. Commun. 2014; 50: 2261
  • 18 Sklyaruk J, Zubar V, Borghs JC, Rueping M. Org. Lett. 2020;  22: 6067
  • 19 Petrova J, Kirilov M, Momchilova S, Kossev K. Phosphorus Surfur 1988; 40: 69
  • 20 Hwang JJ, Lin RL, Shieh RL, Jwo JJ. J. Mol. Catal. A: Chem. 1999; 142: 125
  • 21 Tai CC, Yu MS, Chen YL, Chuang WH, Lin TH, Yap GP. A, Ong TG. Chem. Commun. 2014; 50: 4344
  • 22 Das M, O’Shea DF. Org. Lett. 2016; 18: 336
  • 23 Paul SC, Mizuno S, Lee HJ, Zheng X, Chajkowisk S, Rimoldi JM, Conney A, Suh N, Rimando AM. Eur. J. Med. Chem. 2010; 45: 3702
  • 24 Tseng CC, Li M, Mo B, Warren SA, Spivey AC. Chem. Lett. 2011; 40: 995
  • 25 Giorgio C, Susanna F. J. Mol. Catal. A: Chem. 2014;  393:  191
  • 26 Landge VG, Yadav V, Subramanian M, Dangarh P, Balaraman E. Chem. Commun. 2019; 55: 6130
  • 27 Derman SC, Schwan AL. J. Org. Chem. 2012; 77: 10978
  • 28 Yu L, Huang Y, Wei Z, Ding Y, Su C, Xu Q. J. Org. Chem. 2015; 80: 8677
  • 29 Li Y, Luo X, Chen X, Chen L, Zhang K. Chem. Commun. 2019; 55: 2170
  • 30 Shi H, Dai SW, Wang B, Cao S. Organometallics 2018; 37: 459
  • 31 Zhang B, Feng P, Cui Y, Jiao N. Chem. Commun. 2012; 48: 7280
  • 32 Yao CZ, Li QQ, Wang MM, Ning XS, Kang YB. Chem. Commun. 2015; 51: 7729
  • 33 Amani J, Sodagar E, Molander GA. Org. Lett. 2016; 18: 732