Synthesis 2022; 54(08): 1939-1950
DOI: 10.1055/a-1729-9664
short review

Enantioselective C–H Functionalization toward Silicon-Stereogenic Silanes

Wei Yuan
,
Chuan He
We are grateful for financial support from the National Natural Science Foundation of China (21901104, 22122102, 22101120), Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), and the Stable Support Plan Program of Shenzhen Natural Science Fund (Program Contract No. 20200925152450004).


Abstract

In recent years, transition-metal-catalyzed enantioselective C–H bond functionalization has emerged as a powerful and attractive synthetic approach to access silicon-stereogenic centers, which provides impetus for the innovation of chiral organosilicon chemistry. This short review summarizes recent advances in the construction of silicon-stereogenic silanes via transition-metal-catalyzed enantioselective C–H functionalization. We endeavor to highlight the great potential of this methodology and hope that this review will shed light on new perspectives and inspire further research in this emerging area.

1 Introduction

2 Enantioselective C–H Functionalization Induced by Oxidative Addition­ of an Aryl-OTf Bond

3 Enantioselective C–H Functionalization Induced by Oxidative Addition­ of a Silacyclobutane

4 Directing-Group-Assisted Enantioselective C–H Functionalization

5 Enantioselective Dehydrogenative C–H/Si–H Coupling

5.1 Enantioselective C(sp2)–H Silylation

5.2 Enantioselective C(sp3)–H Silylation

6 Summary and Outlook



Publication History

Received: 07 December 2021

Accepted after revision: 03 January 2022

Accepted Manuscript online:
03 January 2022

Article published online:
15 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Silicon in Organic, Organometallic and Polymer Chemistry. Brook M. John Wiley & Sons; New York: 2000
    • 1b The Chemistry of Organic Silicon Compounds . Rappoport Z, Apeloig Y. John Wiley & Sons; Chichester: 2003
    • 1c Organosilicon Chemistry: Novel Approaches and Reactions . Hiyama T, Oestreich M. Wiley-VCH; Weinheim: 2019
    • 1d Chen J, Cao Y. Macromol. Rapid Commun. 2007; 28: 1714
    • 1e Franz AK, Wilson SO. J. Med. Chem. 2013; 56: 388
    • 1f Remond E, Martin C, Martinez J, Cavelier F. Chem. Rev. 2016; 116: 11654
    • 1g Yamaguchi S, Tamao K. Chem. Lett. 2005; 34: 2
    • 1h Shimizu M, Hiyama T. Synlett 2012; 23: 973
    • 1i Fujii S, Hashimoto Y. Future Med. Chem. 2017; 9: 485
  • 2 Oestreich M. Synlett 2007; 1629
  • 3 Brook AG, Gajewski JJ. Heteroat. Chem. 1990; 1: 57
    • 5a Chan TH, Wang D. Chem. Rev. 1992; 92: 995
    • 5b Bai X.-F, Zou J.-F, Chen M.-Y, Xu Z, Li L, Cui Y.-M, Zheng Z.-J, Xu L.-W. Chem. Asian J. 2017; 12: 1730
    • 5c Chang X, Ma P.-L, Chen H.-C, Li C.-Y, Wang P. Angew. Chem. Int. Ed. 2020; 59: 8937
    • 6a Li Y, Seino M, Kawakami Y. Macromolecules 2000; 33: 5311
    • 6b Oishi M, Kawakami Y. Macromolecules 2000; 33: 1960
    • 6c Kawakami Y, Kakihana Y, Ooi O, Oishi M, Suzuki K, Shinke S, Uenishi K. Polym. Int. 2009; 58: 279
    • 6d Koga S, Ueki S, Shimada M, Ishii R, Kurihara Y, Yamanoi Y, Yuasa J, Kawai T, Uchida TA, Iwamura M, Nozaki K, Nishihara H. J. Org. Chem. 2017; 82: 6108
    • 6e Zhu J, Chen S, He C. J. Am. Chem. Soc. 2021; 143: 5301
  • 8 Shintani R, Otomo H, Ota K, Hayashi T. J. Am. Chem. Soc. 2012; 134: 7305
  • 9 Shimizu M, Mochida K, Hiyama T. Angew. Chem. Int. Ed. 2008; 47: 9760
  • 10 Sato Y, Takagi C, Shintani R, Nozaki K. Angew. Chem. Int. Ed. 2017; 56: 9211
  • 11 Mu Q.-C, Chen J, Xia C.-G, Xu L.-W. Coord. Chem. Rev. 2018; 374: 93
  • 12 Zhang Q.-W, An K, Liu L.-C, Zhang Q, Guo H, He W. Angew. Chem. Int. Ed. 2017; 56: 1125
  • 13 Zhang L, An K, Wang Y, Wu Y.-D, Zhang X, Yu Z.-X, He W. J. Am. Chem. Soc. 2021; 143: 3571
    • 14a Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 14b Sambiagio C, Schonbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnurch M. Chem. Soc. Rev. 2018; 47: 6603
  • 15 Lin Y, Ma W.-Y, Xu Z, Zheng Z.-J, Cao J, Yang K.-F, Cui Y.-M, Xu L.-W. Chem. Asian J. 2019; 14: 2082
    • 16a Diesel J, Cramer N. ACS Catal. 2019; 9: 9164
    • 16b Zhang M, Gao S, Tang J, Chen L, Liu A, Sheng S, Zhang AQ. Chem. Commun. 2021; 57: 8250
    • 16c Zheng L, Nie X.-X, Wu Y, Wang P. Eur. J. Org. Chem. 2021; 6006
  • 17 Kuninobu Y, Yamauchi K, Tamura N, Seiki T, Takai K. Angew. Chem. Int. Ed. 2013; 52: 1520
  • 18 Murai M, Takeuchi Y, Yamauchi K, Kuninobu Y, Takai K. Chem. Eur. J. 2016; 22: 6048
  • 19 Mu D, Yuan W, Chen S, Wang N, Yang B, You L, Zu B, Yu P, He C. J. Am. Chem. Soc. 2020; 142: 13459
  • 20 Yuan W, You L, Lin W, Ke J, Li Y, He C. Org. Lett. 2021; 23: 1367
  • 21 Ma W, Liu L.-C, An K, He T, He W. Angew. Chem. Int. Ed. 2021; 60: 4245
  • 22 Chen S, Mu D, Mai P.-L, Ke J, Li Y, He C. Nat. Commun. 2021; 12: 1249
  • 23 Zhang H, Zhao D. ACS Catal. 2021; 11: 10748
    • 24a Lee T, Wilson TW, Berg R, Ryberg P, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 6742
    • 24b Su B, Zhou T.-G, Li X.-W, Shao X.-R, Xu P.-L, Wu W.-L, Hartwig JF, Shi Z.-J. Angew. Chem. Int. Ed. 2017; 56: 1092
    • 24c Lin Y, Jiang K.-Z, Cao J, Zheng Z.-J, Xu Z, Cui Y.-M, Xu L.-W. Adv. Synth. Catal. 2017; 359: 2247
  • 25 Murai M, Takeshima H, Morita H, Kuninobu Y, Takai K. J. Org. Chem. 2015; 80: 5407
  • 26 Yang B, Yang W, Guo Y, You L, He C. Angew. Chem. Int. Ed. 2020; 59: 22217
  • 27 Guo Y, Liu M.-M, Zhu X, Zhu L, He C. Angew. Chem. Int. Ed. 2021; 60: 13887