Neuroradiologie Scan 2022; 12(04): 269-291
DOI: 10.1055/a-1673-1345
CME-Fortbildung

Praktischer Ansatz für die Diagnose von Wirbelsäulendysplasien

A practical approach to diagnosis of spinal dysraphism
Bárbara Trapp
,
Tomás de Andrade Lourenção Freddi
,
Monique de Oliveira Morais Hans
,
Isadora F. T. Lemos Calixto
,
Emi Fujino
,
Laila C. Alves Rojas
,
Stênio Burlin
,
Danilo M. Cerqueira Costa
,
Henrique Carrete Junior
,
Nitamar Abdala
,
Luís A. Tobaru Tibana
,
Eduardo T. Takehara
,
Gustavo D. Gomez

Spinale Dysrhaphien sind angeborene Fehlbildungen des Rückenmarks, die durch eine Störung in der komplexen Kaskade embryologischer Ereignisse bei der Entwicklung der Wirbelsäule bedingt sind. Die Kenntnis der normalen embryologischen Entwicklung des Rückenmarks ist entscheidend für das Verständnis der Pathogenese, der neuroradiologischen Szenarien und der klinisch-radiologischen Klassifizierung angeborener Fehlbildungen des Rückenmarks.

Abstract

Spinal dysraphisms (SDs) are congenital malformations of the spinal cord, determined by derangement in the complex cascade of embryologic events involved in spinal development. They represent a heterogeneous group ranging from mild clinical manifestations—going unnoticed or being discovered at clinical examination—to a causal factor of life quality impairment, especially when associated with musculoskeletal, gastrointestinal, genitourinary, or respiratory system malformations. Knowledge of the normal embryologic development of the spinal cord—which encompasses three main steps (gastrulation, primary neurulation, and secondary neurulation)—is crucial for understanding the pathogenesis, neuroradiologic scenarios, and clinical-radiologic classification of congenital malformations of the spinal cord. SDs can be divided with clinical examination or neuroradiologic study into two major groups: open SDs and closed SDs. Congenital malformations of the spinal cord include a wide range of abnormalities that vary considerably in imaging and clinical characteristics and complexity and therefore may represent a diagnostic challenge, even for the experienced radiologist.

Kernaussagen
  • Die Neurobildgebung spielt eine entscheidende Rolle bei der Diagnose, der Erkennung von Fehlbildungen, der Therapieplanung und der postoperativen Beurteilung von spinalen Dysraphien. Im Allgemeinen lassen sich diese am besten mit der MRT charakterisieren.

  • Nach der klinisch-radiologischen Klassifikation werden spinale Dysraphien in 2 Hauptgruppen eingeteilt: offene und geschlossene Formen, je nachdem, ob ein Hautdefekt über der Anomalie liegt. Bei offenen spinalen Dysraphien sind das Nervengewebe und die Rückenmarkshäute direkt der äußeren Umgebung ausgesetzt. Bei geschlossenen Formen sind das Nerven- und Meningealgewebe von Haut oder subkutanem Gewebe bedeckt, sodass keine Exposition der Plakode besteht.

  • Die Myelomeningozele ist ein neurochirurgischer Notfall wie alle offenen spinalen Dysraphien und stellt mit mehr als 98 % der Fälle die häufigste Form der offenen spinalen Dysraphien dar.

  • Lipome mit duralem Defekt bilden ein Kontinuum von Anomalien (Lipomyelomeningozele, Lipomyelozele und Lipomyeloschisis), die einem gemeinsamen pathophysiologischen Prozess entspringen. Sie unterscheiden sich voneinander durch die Lage der Schnittstelle zwischen Rückenmark und Lipom. Zusammen machen diese Anomalien 75,9 % aller spinalen Lipome und 16,4 % aller geschlossenen spinalen Dysraphien aus.

  • Die Unterscheidung zwischen den beiden Typen der Diastematomyelie hängt von der Entwicklung des Primitivstreifengewebes ab: Bei Typ I entwickelt sich der dazwischen liegende Primitivstreifen zu Knochen oder Knorpel und bildet eine Scheidewand, die den Duralsack in 2 Teile trennt. Bei Typ II wird der Primitivstreifen resorbiert oder bildet ein fibröses Septum und ein einziger Duralsack umschließt beide Duraschläuche.



Publication History

Article published online:
04 October 2022

© 2022. The Radiological Society of North America. All rights reserved. Originally published in English in RadioGraphics 2021; 41: 559–575. Online published in 10.1148/rg.2021200103. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Schwartz EC, Barkovich AJ. Congenital anomalies of the spine. Zinner S, Pecarich L. Pediatric neuroimaging. 6. Philadelphia, Pa: Wolters Kluwer; 2018: 1311-1377
  • 2 McKusick VA. Neural tube defects, susceptibility to; NTD. OMIM, 1986; updated 2015. https://www.omim.org/entry/182940 Stand: 25.11.2021
  • 3 Rossi A. Imaging in spine and spinal cord developmental malformations. Barkhof F, Jäger HR, Thurnher MM, Rovira A. Clinical neuroradiology: the ESNR textbook. Cham, Switzerland: Springer; 2018: 1609-1640
  • 4 Asma B, Dib O, Chahinez H. et al. Imaging findings in spinal dysraphisms. EPoster C-1516. European Congress of Radiology, 2017. https://doi.org/10.1594/ecr2017/C-1516 Stand: 25.11.2021
  • 5 Passias PG, Poorman GW, Jalai CM. et al. Incidence of congenital spinal abnormalities among pediatric patients and their association with scoliosis and systemic anomalies. J Pediatr Orthop 2019; 39: e608-e613
  • 6 Aoulad Fares D, Schalekamp-Timmermans S, Nawrot TS. et al. Preconception telomere length as a novel maternal biomarker to assess the risk of spina bifida in the offspring. Birth Defects Res 2020; 112: 645-651
  • 7 Lei YP, Zhang T, Li H. et al. VANGL2 mutations in human cranial neural-tube defects. N Engl J Med 2010; 362: 2232-2235
  • 8 Copp AJ, Stanier P, Greene NDE. Genetic basis of neural tube defects. Di Rocco C, Pang D, Rutka J. Textbook of pediatric neurosurgery. Cham, Switzerland: Springer; 2017: 1-28
  • 9 Schorah C. Dick Smithells, folic acid, and the prevention of neural tube defects. Birth Defects Res A Clin Mol Teratol 2009; 85 : 254-259
  • 10 van Gool JD, Hirche H, Lax H. et al. Folic acid, and primary prevention of neural tube defects: a review. Reprod Toxicol 2018; 80: 73-84
  • 11 Mills JL, McPartlin JM, Kirke PN. et al. Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 1995; 345: 149-151
  • 12 Zohn IE, Sarkar AA. The visceral yolk sac endoderm provides for absorption of nutrients to the embryo during neurulation. Birth Defects Res A Clin Mol Teratol 2010; 88 : 593-600
  • 13 Blount JP, George TM, Koueik J. et al. Concepts in the neurosurgical care of patients with spinal neural tube defects: an embryologic approach. Birth Defects Res 2019; 111: 1564-1576
  • 14 ten Donkelaar HJ, Yamada S, Shiota K. et al. Overview of the development of the human brain and spinal cord. ten Donkelaar HJ, Lammens M, Hori A. Clinical neuroembryology: development and developmental disorders of the human central nervous system. 2. Cham, Switzerland: Springer; 2014: 9-15
  • 15 Pomeroy S, Yuskaitis CJ. Development of the nervous system. Polin RA, Abman SH, Rowitch D, Benitz WE. Fetal and neonatal physiology E-book. 5. Philadelphia, Pa: Elsevier; 2017: 1294-1313
  • 16 Rossi A, Biancheri R, Cama A. et al. Imaging in spine and spinal cord malformations. Eur J Radiol 2004; 50 : 177-200
  • 17 Tortori-Donati P. Congenital malformations of the spine and spinal cord. Tortori-Donati P, Rossi A. Pediatric neuroradiology. Cham, Switzerland: Springer; 2005: 1551-1608
  • 18 Reghunath A, Ghasi RG, Aggarwal A. Unveiling the tale of the tail: an illustration of spinal dysraphisms. Neurosurg Rev 2021; 44 : 97-114 DOI: 10.1007/s10143-019-01215-z.
  • 19 Dias MS, Walker ML. The embryogenesis of complex dysraphic malformations: a disorder of gastrulation?. Pediatr Neurosurg 1992; 18 : 229-253
  • 20 Kumar J, Afsal M, Garg A. Imaging spectrum of spinal dysraphism on magnetic resonance: a pictorial review. World J Radiol 2017; 9 : 178-190
  • 21 Tortori-Donati P, Rossi A, Cama A. Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology 2000; 42 : 471-491
  • 22 Dias MS, Partington M. Embryology of myelomeningocele and anencephaly. Neurosurg Focus 2004; 16 : E1
  • 23 Kaufman BA. Neural tube defects. Pediatr Clin North Am 2004; 51 : 389-419
  • 24 Parmar H, Patkar D, Shah J. et al. Diastematomyelia with terminal lipomyelocystocele arising from one hemicord: case report. Clin Imaging 2003; 27 : 41-43
  • 25 Cama A, Tortori-Donati P, Piatelli GL. et al. Chiari complex in children: neuroradiological diagnosis, neurosurgical treatment, and proposal of a new classification (312 cases). Eur J Pediatr Surg 1995; 5 (Suppl. 01) 35-38
  • 26 Rufener SL, Ibrahim M, Raybaud CA. et al. Congenital spine and spinal cord malformations: pictorial review. AJR Am J Roentgenol 2010; 194 : S26-S37
  • 27 Dias M, Partington M. Section on Neurologic Surgery.. Congenital brain and spinal cord malformations and their associated cutaneous markers. Pediatrics 2015; 136: e1105-e1119
  • 28 Muthukumar N. Terminal and nonterminal myelocystoceles. J Neurosurg 2007; 107 : 87-97
  • 29 Awad T. Terminal myelocystocele: a rare variant of spinal dysraphism – case series and review of the literature. Egypt Spine J 2016; 17 : 28-33
  • 30 Byrd SE, Harvey C, McLone DG. et al. Imaging of terminal myelocystoceles. J Natl Med Assoc 1996; 88 : 510-516
  • 31 Rossi A, Piatelli G, Gandolfo C. et al. Spectrum of nonterminal myelocystoceles. Neurosurgery 2006; 58 : 509-515 discussion 509-515
  • 32 Shen SH, Lirng JF, Chang FC. et al. Magnetic resonance imaging appearance of intradural spinal lipoma. Zhonghua Yi Xue Za Zhi (Taipei) 2001; 64 : 364-368
  • 33 Pasalic I, Brgic K, Nemir J. et al. Intramedullary spinal cord lipoma mimicking a late subacute hematoma. Asian J Neurosurg 2018; 13 : 1282-1284
  • 34 Patwardhan V, Patanakar T, Patkar D. et al. MR imaging findings of intramedullary lipomas. AJR Am J Roentgenol 2000; 174 : 1792-1793
  • 35 Falavigna A, Segatto AC, Salgado K. A rare case of intramedullary lipoma associated with cyst. Arq Neuropsiquiatr 2001; 59 : 112-115
  • 36 Cools MJ, Al-Holou WN, Stetler Jr WR. et al. Filum terminale lipomas: imaging prevalence, natural history, and conus position. J Neurosurg Pediatr 2014; 13: 559-567
  • 37 O’Rahilly R, Müller F. Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 2010; 192 : 73-84
  • 38 Lotfinia I, Mahdkhah A. The cystic dilation of ventriculus terminalis with neurological symptoms: three case reports and a literature review. J Spinal Cord Med 2018; 41 : 741-747
  • 39 Coleman LT, Zimmerman RA, Rorke LB. Ventriculus terminalis of the conus medullaris: MR findings in children. AJNR Am J Neuroradiol 1995; 16 : 1421-1426
  • 40 Heuser CC, Hulinky RS, Jackson GM. Caudal regression syndrome. Copel JA, D’Alton ME, Feltovich H. et al. Obstetric imaging: fetal diagnosis and care. 2. Philadelphia, Pa: Elsevier; 2018: 291-294
  • 41 Bell R, Glinianaia SV, Tennant PW. et al. Peri-conception hyperglycaemia and nephropathy are associated with risk of congenital anomaly in women with pre-existing diabetes: a population-based cohort study. Diabetologia 2012; 55 : 936-947
  • 42 Lee SM, Cheon JE, Choi YH. et al. Limited dorsal myeloschisis and congenital dermal sinus: comparison of clinical and MR imaging features. AJNR Am J Neuroradiol 2017; 38 : 176-182
  • 43 Kim JW, Wang KC, Chong S. et al. Limited dorsal myeloschisis: reconsideration of its embryological origin. Neurosurgery 2020; 86 : 93-100
  • 44 Pang D, Zovickian J, Wong ST. et al. Limited dorsal myeloschisis: a not-so-rare form of primary neurulation defect. Childs Nerv Syst 2013; 29 : 1459-1484
  • 45 Pang D, Zovickian J, Oviedo A. et al. Limited dorsal myeloschisis: a distinctive clinicopathological entity. Neurosurgery 2010; 67 : 1555-1579 discussion 1579–1580
  • 46 Tortori-Donati P, Fondelli MP, Rossi A. et al. Segmental spinal dysgenesis: neuroradiologic findings with clinical and embryologic correlation. AJNR Am J Neuroradiol 1999; 20 : 445-456
  • 47 Emmanouilidou M, Chondromatidou S, Arvaniti M. et al. Spinal segmental dysgenesis: presentation of a rare spinal congenital abnormality. Neuroradiol J 2008; 21 : 388-392
  • 48 Chellathurai A, Ayyamperumal B, Thirumaran R. et al. Segmental spinal dysgenesis: "redefined". Asian Spine J 2019; 13 : 189-197
  • 49 Deora H, Srinivas D, Shukla D. et al. Multiple-site neural tube defects: embryogenesis with complete review of existing literature. Neurosurg Focus 2019; 47 : E18
  • 50 Ramdurg Shashank R, Shubhi D, Vishal K. Multiple neural tube defects: a rare combination of limited dorsal myeloschisis, diplomyelia with dorsal bony spur, sacral meningocoele, syringohydromyelia, and tethered cord. Childs Nerv Syst 2017; 33 : 699-701