Synthesis 2022; 54(05): 1395-1403
DOI: 10.1055/a-1655-6078
paper

Synthesis of a New Phorbazole and Its Derivatives

a   Department of Chemistry, Faculty of Mathematics and Natural Sciences, Ganesha University of Education, Bali, Indonesia 81117, Indonesia
,
Wendy A. Loughlin
b   School of Environment and Science, Griffith University, Nathan 4111, Queensland, Australia
,
c   College of Engineering, IT and Environment, Charles Darwin University, Northern Territory 0909, Australia
› Author Affiliations
This work was funded by the Kementerian Riset dan Teknologi Republik Indonesia (Ministry of Research and Technology, Republic of Indonesia) (Grant No. 011.38.2001-RUT).


Abstract

Phorbazoles are chlorinated marine alkaloids containing pyrrole, oxazole and phenol ring units, and differ in the number and positions of chlorine atoms. They are isolated from sea sponges and nudibranchs. In this work, a convenient synthetic method leading to a new phorbazole and its derivatives is developed. This synthesis of synthetic phorbazole G and its derivatives is achieved in seven steps in good overall yields of 26–52%. It involves formation of the pyrrole-oxazole skeleton followed by chlorination. The pyrrole-oxazole skeleton is synthesized from pyrrole and substituted acetophenones, and the key step involves cyclodehydration of amide intermediates to give protected oxazoles, followed by hydrolysis.

Supporting Information



Publication History

Received: 04 August 2021

Accepted after revision: 27 September 2021

Accepted Manuscript online:
27 September 2021

Article published online:
16 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rudi A, Stein Z, Green S, Goldberg I, Kashman Y, Benayahu Y, Schleyer M. Tetrahedron Lett. 1994; 35: 2589
  • 2 Nuzzo G, Ciavatta ML, Kiss R, Mathieu V, Leclercqz H, Manzo E, Villani G, Mollo E, Lefranc F, D’Souza L, Gavagnin M, Cimino G. Mar. Drugs 2012; 10: 1799
  • 3 Meyers AI, Lawson JP, Walker DG, Linderman RJ. J. Org. Chem. 1986; 51: 5111
  • 4 Adamczeski M, Quinoa E, Crews P. J. Am. Chem. Soc. 1988; 110: 1598
  • 5 Lindquist N, Fenical W, Van Duyne GD, Clardy J. J. Am. Chem. Soc. 1991; 113: 2303
  • 6 Ichiba T, Yoshida WY, Scheuer PJ, Higa T, Gravalos DG. J. Am. Chem. Soc. 1991; 113: 3173
  • 7 Matsunaga S, Fujiki H, Sakata D, Fusetani N. Tetrahedron 1991; 47: 2999
  • 8 Radspieler A, Liebscher J. Tetrahedron 2001; 57: 4867
  • 9 Guttormsen Y, Fairhurst ME, Pandey SK, Isaksson J, Haug BE, Bayer A. Molecules 2020; 25: 4848
  • 10 Loughlin WA, Muderawan IW, McCleary MA, Volter KE, King MD. Aust. J. Chem. 1999; 52: 231
  • 11 Papadopoulos EP, Haidar NF. Tetrahedron Lett. 1968; 9: 1721
  • 12 Hudson CB, Robertson AV, Simpson WR. J. Aust. J. Chem. 1968; 21: 769
  • 13 Kakushima M, Hamel P, Frenette R, Rokach J. J. Org. Chem. 1983; 48: 3214
  • 14 Dinsmore CJ, Blair Zartman C. Tetrahedron Lett. 1999; 40: 3989
  • 15 Billimoria JD, Maclagan NF. J. Chem. Soc. 1954; 3257
  • 16 Blazevic N, Kolbah D, Belin B, Sunjic V, Kajez F. Synthesis 1979; 161
  • 17 Hall JH, Chien JY, Kauffman JM, Litak PT, Adams JK, Henry RA, Hollins RA. J. Heterocycl. Chem. 1992; 29: 1245
  • 18 Motekaitis RJ, Heinert DH, Martell AE. J. Org. Chem. 1970; 35: 2504
  • 19 Tzankova D, Vladimirova S, Peikova L, Georgieva M. J. Chem. Tech. Metall. 2018; 53: 451
  • 20 Cordell GA. J. Org. Chem. 1975; 40: 3161