Synthesis 2022; 54(02): 378-382
DOI: 10.1055/a-1628-7586
psp

A Straightforward, Purification-Free Procedure for the Synthesis of Ando and Still–Gennari Type Phosphonates

,
The research was financed by the Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences (Polska Akademia Nauk).


Abstract

Z-Selective Still–Gennari and Ando modifications of the typically E-selective Horner–Wadsworth–Emmons reaction are highly valuable synthetic tools in organic chemistry. These procedures are based on application of bis(2,2,2-trifluoroethyl) phosphonates or diaryl phosphonates, respectively, for the olefination of carbonyl groups. In our research, we present an improved, straightforward, purification-free procedure for the synthesis of these reagents. The key step of our procedure is the reaction of phosphonic dichlorides with the appropriate sodium alkoxides, which results in 52–97% isolated yields of the desired products on a gram scale. The whole three-step process is performed in one pot. Most importantly, the product is obtained in over 95% purity after simple extraction, avoiding column chromatography and distillation. Moreover, we present the synthesis of a novel Still–Gennari type reagent, bis(1,1,1,3,3,3-hexafluoroisopropyl) phosphonates, which may exhibit improved Z-selectivity in Still–Gennari olefinations.

Supporting Information



Publication History

Received: 01 July 2021

Accepted after revision: 01 September 2021

Accepted Manuscript online:
01 September 2021

Article published online:
13 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kobayashi K, Tanaka KIII, Kogen H. Tetrahedron Lett. 2018; 59: 568
    • 1b Bisceglia J. Á, Orelli LR. Curr. Org. Chem. 2012; 16: 2206
    • 1c Bisceglia J. Á, Orelli LR. Curr. Org. Chem. 2015; 19: 744
    • 1d Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
    • 1e Horner L, Hoffmann HM. R, Wippel HG. Chem. Ber. 1958; 91: 61
    • 1f Horner L, Hoffmann HM. R, Wippel HG, Klahre G. Chem. Ber. 1959; 92: 2499
    • 1g Wadsworth WS, Emmons WD. J. Am. Chem. Soc. 1961; 83: 1733
    • 1h Roman D, Sauer M, Beemelmanns C. Synthesis 2021; 53: 2713
  • 2 Nagaoka H, Kishi Y. Tetrahedron 1981; 37: 3873
    • 3a Breuer E, Bannet DM. Tetrahedron Lett. 1977; 1141
    • 3b Patois C, Savignac P. Tetrahedron Lett. 1991; 32: 1317
  • 4 Still WC, Gennari C. Tetrahedron Lett. 1983; 24: 4405
  • 6 Janicki I, Kiełbasiński P. Adv. Synth. Catal. 2020; 362: 2552
    • 7a Motoyoshiya J, Kusaura T, Kokin K, Yokoya S, Takaguchi Y, Narita S, Aoyama H. Tetrahedron 2001; 57: 1715
    • 7b Ando K. J. Org. Chem. 1999; 64: 6815
    • 9a da Silva Prado V, Burtoloso AC. B. Synthesis 2010; 361
    • 9b Yu W, Su M, Jin Z. Tetrahedron Lett. 1999; 40: 6725
    • 9c Zhang TY, O’Toole JC, Dunigan JM. Tetrahedron Lett. 1998; 39: 1461
    • 9d Ando K. Synlett 2001; 1272
    • 9e Kojima S, Hidaka T, Ohba Y, Ohkata K. Phosphorus, Sulfur Silicon Relat. Elem. 2002; 177: 729
    • 9f Fortin S, Dupont F, Deslongchamps P. J. Org. Chem. 2002; 67: 5437
    • 9g Kokin K, Tsuboi S, Motoyoshiya J, Hayashi S. Synthesis 1996; 637
    • 9h Midura WH, Ewas AM. M, Mikołajczyk M. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 535
    • 9i Davis AA, Rosén JJ, Kiddle JJ. Tetrahedron Lett. 1998; 39: 6263
    • 9j Janicki I, Kiełbasiński P. Synthesis 2018; 50: 4140
    • 10a Touchard FP. Eur. J. Org. Chem. 2005; 1790
    • 10b Touchard FP, Capelle N, Mercier M. Adv. Synth. Catal. 2005; 347: 707
    • 10c Kokin K, Iitake K.-I, Takaguchi Y, Aoyama H, Hayashi S, Motoyoshiya J. Phosphorus, Sulfur Silicon Relat. Elem. 1998; 133: 21