Diabetologie und Stoffwechsel 2021; 16(S 02): S299-S307
DOI: 10.1055/a-1515-8792
DDG-Praxisempfehlung

Diabetes, Sport und Bewegung

Katrin Esefeld
1   Präventive und Rehabilitative Sportmedizin, Klinikum rechts der Isar, Technische Universität München, München
4   Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Munich Heart Alliance (MHA), München
,
Stephan Kress
2   AG Diabetes, Sport und Bewegung der DDG
7   Medizinische Klinik Vinzentius-Krankenhaus Landau
,
Meinolf Behrens
2   AG Diabetes, Sport und Bewegung der DDG
8   Diabeteszentrum Minden, Minden
,
Peter Zimmer
2   AG Diabetes, Sport und Bewegung der DDG
,
Michael Stumvoll
3   Medizinische Klinik und Poliklinik III, Universitätsklinik Leipzig, Leipzig
,
Ulrike Thurm
2   AG Diabetes, Sport und Bewegung der DDG
,
Bernhard Gehr
2   AG Diabetes, Sport und Bewegung der DDG
9   m&i Fachklinik Bad Heilbrunn
,
Christian Brinkmann
2   AG Diabetes, Sport und Bewegung der DDG
5   Institut für Kreislaufforschung und Sportmedizin, Deutsche Sporthochschule Köln, Köln
6   IST Hochschule Düsseldorf, Düsseldorf
,
Martin Halle
1   Präventive und Rehabilitative Sportmedizin, Klinikum rechts der Isar, Technische Universität München, München
2   AG Diabetes, Sport und Bewegung der DDG
4   Deutsches Zentrum für Herzkreislaufforschung (DZHK), partner site Munich Heart Alliance (MHA), München
› Author Affiliations
Aktualisierungshinweis

Die DDG-Praxisempfehlungen werden regelmäßig zur zweiten Jahreshälfte aktualisiert. Bitte stellen Sie sicher, dass Sie jeweils die neueste Version lesen und zitieren.

Inhaltliche Änderungen gegenüber der Vorjahresfassung

Änderung 1: Aktualisierung der Bewegungsempfehlungen für ein optimales Bewegungspensum gemäß den Empfehlungen der American Diabetes Association (ADA) aus dem Jahr 2021

Begründung: Empfehlungen der neu erschienenen Guidelines der American Diabetes Association (ADA) 2021 zum Bewegungspensum für Menschen mit Diabetes mellitus werden nun berücksichtigt.

Stützende Quellenangabe: [5]

Änderung 2: Einfügung eines Abschnittes „Verfügbare Konzepte zur Bewegungsinitiierung“

Begründung: Es wird auf das vorhandene Schulungsmodul „Disko+“ und das neu entwickelte Konzept „Praxis in Bewegung“ aufmerksam gemacht, um mehr Patienten langfristig in Bewegung zu bringen.

Stützende Quellenangabe: [43] [44]



Publication History

Article published online:
21 October 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Pedersen BK, Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports 2015; 25 (Suppl. 03) 1-72
  • 2 Kirchner H, Osler ME, Krook A. et al. Epigenetic flexibility in metabolic regulation: disease cause and prevention?. Trends in cell biology 2013; 23: 203-209
  • 3 Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nature reviews rheumatology 2015; 11: 86-97
  • 4 Fiuza-Luces C, Garatachea N, Berger NA. et al. Exercise is the real polypill. Physiology 2013; 28: 330-358
  • 5 American Diabetes Association. Standards in medical care in diabetes 2021. Diabetes care 2021; 44: S53-S72
  • 6 Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Advances in physiology education 2014; 38: 308-314
  • 7 Herbst A, Kordonouri O, Schwab KO. et al. Impact of physical activity on cardiovascular risk factors in children with type 1 diabetes: a multicenter study of 23251 patients. Diabetes care 2007; 30: 2098-2100
  • 8 Tonoli C, Heyman E, Roelands B. et al. Effects of different types of acute and chronic (training) exercise on glycaemic control in type 1 diabetes mellitus: a meta-analysis. Sports medicine (Auckland, NZ) 2012; 42: 1059-1080
  • 9 Riddell MC, Gallen IW, Smart CE. et al. Exercise management in type 1 diabetes: a consensus statement. Lancet diabetes endocrinol 2017; 5: 377-390
  • 10 Roberts AJ, Taplin CE. Exercise in Youth with Type 1 Diabetes. Current pediatric reviews 2015; 11: 120-125
  • 11 Pivovarov JA, Taplin CE, Riddell MC. Current perspectives on physical activity and exercise for youth with diabetes. Pediatric diabetes 2015; 16: 242-255
  • 12 Bally L, Laimer M, Stettler C. Exercise-associated glucose metabolism in individuals with type 1 diabetes mellitus. Current opinion in clinical nutrition and metabolic care 2015; 18: 428-433
  • 13 Garcia-Garcia F, Kumareswaran K, Hovorka R. et al. Quantifying the acute changes in glucose with exercise in type 1 diabetes: a systematic review and meta-analysis. Sports medicine (Auckland, NZ) 2015; 45: 587-599
  • 14 Lean ME, Leslie WS, Barnes AC. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster randomised trial. Lancet 2018; 391: 541-551
  • 15 Lean MEJ, Leslie WS, Barnes AC. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2 year results of the DiRECT open-label, cluster randomised trial. Lancet diabetes endocrinol 2019; 7: 344-355
  • 16 Rohling M, Herder C, Roden M. et al. Effects of Long-Term Exercise Interventions on Glycaemic Control in Type 1 and Type 2 Diabetes: a Systematic Review. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association. 2016
  • 17 Umpierre D, Ribeiro PA, Kramer CK. et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA: the journal of the American Medical Association 2011; 305: 1790-1799
  • 18 Wing RR, Bolin P, Brancati FL. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. The New England journal of medicine 2013; 369: 145-154
  • 19 Knowler WC, Fowler SE, Hamman RF. et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet (London, England) 2009; 374: 1677-1686
  • 20 Look AHEAD research group et al. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes & endocrinology 2014; 2: 801-809
  • 21 Colberg SR, Laan R, Dassau E. et al. Physical activity and type 1 diabetes: time for a rewire?. Journal of diabetes science and technology 2015; 9: 609-618
  • 22 Jayawardene DC, McAuley SA, Horsburgh JC. et al. Closed-loop insulin delivery for adults with type 1 diabetes undertaking high-intensity interval exercise versus moderate-intensity exercise: a randomized, crossover study. Diabetes technology & therapeutics 2017; 19: 340-348
  • 23 Breton MD, Chernavvsky DR, Forlenza GP. et al. Closed-loop control during intense prolonged outdoor exercise in adolescents with type 1 diabetes: the artificial pancreas ski study. Diabetes care 2017; 40: 1644-1650
  • 24 Dovc K, Macedoni M, Bratina N. et al. Closed-loop glucose control in young people with type 1 diabetes during and after unannounced physical activity: a randomised controlled crossover trial. Diabetologia 2017; 60: 2157-2167
  • 25 Ding S, Schumacher M. Sensor monitoring of physical activity to improve glucose management in diabetic patients: a review. Sensors 2016; 16: 589
  • 26 Lunde P, Blakstad Nilsson B, Bergland A. et al. The effectiveness of smartphone apps for lifestyle improvement in noncommunicable diseases: systematic review and meta-analyses. Journal of medical internet research 2018; 20: 1-12
  • 27 Wu X, Guo X, Zhang Z. The efficacy of mobile phone apps for lifestyle modification in diabetes: systematic review and meta-analysis. JMIR Mhealth and Uhealth 2019; 7: e12297
  • 28 Yom-Tov E, Feraru G, Kozdoba M. et al. Encouraging physical activity in patients with diabetes: intervention using a reinforcement learning system. Journal of medical internet research 2017; 19: e338
  • 29 Jimenez G, Lum E, Car J. Examining diabetes management apps recommended from a Google search: content analysis. JMIR Mhealth and Uhealth 2019; 7: e11848
  • 30 Pais S, Parry D, Petrova K. et al. Acceptance of using an ecosystem of mobile apps for use in diabetes clinic for self-management of gestational diabetes mellitus. Studies in health technology and informatics 2017; 245: 188-192
  • 31 Kordonouri O, Riddell MC. Use of apps for physical activity in type 1 diabetes: current status and requirements for future development. Therapeutic advances in endocrinology and metabolism 2019; 10: 1-7
  • 32 Thomas JG, Bond DS, Raynor HA. et al. Comparison of smartphone-based behavioral obesity treatment with gold standard group treatment and control: a randomized trial. Obesity 2019; 27: 572-580
  • 33 Schütte L. Digitale Selbsthilfe. Digitalisierungs- und Technologiereport Diabetes 2019. https://www.dut-report.de/wp-content/uploads/2019/01/Selbsthilfe_Schuette.pdf . Zugriff 26.05.2019
  • 34 Staiano AE, Beyl RA, Guan W. et al. Home-based exergaming among children with overweight/obesity: a randomized clinical trial. Pediatri obesity 2018; 13: 724-733
  • 35 Cooper AR, Tibbitts B, England C. et al. Potential of electric bicycles to improve the health of people with type 2 diabetes: a feasibility study. Diabetic medicine 2018; 35: 1279-1282
  • 36 Karstoft K, Winding K, Knudsen SH. et al. The effects of free-living interval- walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients: a randomized, controlled trial. Diabetes care 2013; 36: 228-236
  • 37 Yang Z, Scott AC, Mao C. et al. Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. Sports medicine 2014; 44: 487-499
  • 38 van Buuren F, Horstkotte D, Mellwig KP. et al. Electrical myostimulation (EMS) improves glucose metabolism and oxygen uptake in type 2 diabetes mellitus patients – results from the EMS study. Diabetes technology & therapeutics 2015; 17: 413-419
  • 39 Robinson CC, Barreto RP, Sbruzzi G. et al. The effects of whole body vibration in patients with type 2 diabetes: a systematic review and metaanalysis of randomized controlled trials. Brazilian journal of physical therapy 2016; 20: 4-14
  • 40 Kempf K, Martin S. Autonomous exercise game use improves metabolic control and quality of life in type 2 diabetes patients – a randomized controlled trial. BMC Endocrine disorders 2013; 13: 57
  • 41 Kemmler W, Weissenfels A, Willert S. et al Recommended contraindications for the use of non-medical WB-electromyostimulation. Deutsche Zeitschrift für Sportmedizin 2019; 11: 278-281
  • 42 Baskerville R, Ricci-Cabello I, Roberts N. et al Impact of accelerometer and pedometer use on physical activity and glycaemic control in people with type 2 diabetes: a systematic review and meta-analysis. Diabetic medicine 2017; 5: 612-620
  • 43 Deutsche Diabetes Gesellschaft (DDG). Disko+. Im Internet (Stand: 05.08.2021): https://www.diabetes-bewegung.de/die-ddg/arbeitsgemeinschaften/sport/seminare-und-workshops/standard-titel/disko
  • 44 Deutsche Diabetes Gesellschaft (DDG). Praxis in Bewegung. Im Internet (Stand: 05.08.2021): https://www.diabetes-bewegung.de/die-ddg/arbeitsgemeinschaften/sport/seminare-und-workshops/standard-titel/praxis-in-bewegung