Subscribe to RSS
DOI: 10.1055/a-1493-9489
Enantioselective Functionalization of Prochiral Cyclobutanones and Cyclobutenones
This work was supported by the National Natural Science Foundation of China (Grant Numbers 21772024 and 21921003).
![](https://www.thieme-connect.de/media/synlett/202113/lookinside/thumbnails/st-2021-p0125-sp_10-1055_a-1493-9489-1.jpg)
Abstract
Enantioselective synthesis of cyclobutane derivatives is still a challenging topic in asymmetric synthesis. [2+2] Cycloaddition and skeleton rearrangement are two primary strategies to this end. Recently, functionalization of cyclobutanones and cyclobutenones, which are readily available via [2+2] cycloadditions as prochiral substrates, has emerged as a powerful tool to access versatile four-membered ring compounds. Herein, we summarize some recent advances in these areas from our and other groups.
1 Introduction
2 Enantioselective Functionalization of Cyclobutanones
2.1 Chiral Lithium Amide Approach
2.2 Enamine Approach
3 Enantioselective Functionalization of Cyclobutenones
4 Conclusion
Key words
cyclobutanone - cyclobutenone - desymmetrization - conjugate addition - chiral lithium amide - enantioselective reductionPublication History
Received: 01 April 2021
Accepted after revision: 28 April 2021
Accepted Manuscript online:
28 April 2021
Article published online:
25 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Fan Y, Gao X, Yue J. Sci. China Chem. 2016; 59: 1126
- 1b Dembitsky VM. Phytomedicine 2014; 21: 1559
- 2a Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
- 2b Xu Y, Conner ML, Brown KM. Angew. Chem. Int. Ed. 2015; 54: 11918
- 2c Wang M, Lu P. Org. Chem. Front. 2018; 5: 254
- 2d Poplata S, Tröster A, Zou Y, Bach T. Chem. Rev. 2016; 116: 9748
- 3 Secci F, Frongia A, Piras PP. Molecules 2013; 18: 15541
- 4a Namyslo JC, Kaufmann DE. Chem. Rev. 2003; 103: 1485
- 4b Sietmann J, Wiest JM. Angew. Chem. Int. Ed. 2020; 59: 6964
- 5 3-Oxocyclobutanecarboxylic acid [CAS Reg. No. 23761-23-1] : ¥ 3,532/500 g, bidepharm.
- 6a Wiberg KB. Angew. Chem., Int. Ed. Engl. 1986; 25: 312
- 6b Khoury PR, Goddard JD, Tam W. Tetrahedron 2004; 60: 8103
- 7a Danheiser RL, Gee SK. J. Org. Chem. 1984; 49: 1672
- 7b Danheiser RL, Brisbois RG, Kowalczyk JJ, Miller RF. J. Am. Chem. Soc. 1990; 112: 3093
- 9a Simpkins NS, Weller MD. Org. React. 2013; 79: 317
- 9b Harrison-Marchand A, Maddaluno J. In Lithium Compounds in Organic Synthesis: From Fundamentals to Applications . Luisi R, Capriati V. Wiley-VCH; Weinheim: 2014: 297
- 10a Honda T, Kimura N, Tsubuki M. Tetrahedron: Asymmetry 1993; 4: 1475
- 10b Honda T, Kimura N, Sato S, Kato D, Tominaga H. J. Chem. Soc., Perkin Trans. 1 1994; 1043
- 10c Honda T, Kimura NJ. Chem. Soc., Chem. Commun. 1994; 77
- 11 Aggarwal VK, Humphries PS, Fenwick A. Angew. Chem. Int. Ed. 1999; 38: 1985
- 12 Zhong C, Wang S, Lu P. Org. Chem. Front. . 2021 8. in press
- 13 Majewski M, lrvine NM, MacKinnon J. Tetrahedron: Asymmetry 1995; 6: 1837
- 14a Dolbier WR, Koroniak H, Houk KN, Sheu C. Acc. Chem. Res. 1996; 29: 471
- 14b Murakami M, Miyamoto Y, Ito Y. Angew. Chem. Int. Ed. 2001; 40: 189
- 15a Dalko PI. Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications, Vol. 3. Wiley-VCH; Weinheim: 2013
- 15b Torres RR. Stereoselective Organocatalysis: Bond Formation Methodologies and Activation Modes. John Wiley & Sons; Hoboken: 2013
- 15c Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726
- 15d Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
- 15e Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
- 16a Cobb AJ. A, Shaw DM, Ley SV. Synlett 2004; 558
- 16b Kotrusz P, Toma S, Schmalz H, Adler A. Eur. J. Org. Chem. 2004; 1577
- 17 Aitken DJ, Capitta F, Frongia A, Gori D, Guillot R, Ollivier J, Piras PP, Secci F, Spiga M. Synlett 2011; 712
- 18a Aitken DJ, Bernard AM, Capitta F, Frongia A, Guillot R, Ollivier J, Piras PP, Secci F, Spiga M. Org. Biomol. Chem. 2012; 10: 5045
- 18b Capitta F, Frongia A, Ollivier J, Aitken DJ, Secci F, Piras PP, Guillot R. Synlett 2015; 26: 123
- 19a Afewerki S, Córdova A. Chem. Rev. 2016; 116: 13512
- 19b Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
- 19c Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
- 19d Chen D, Han Z, Zhou X, Gong L. Acc. Chem. Res. 2014; 47: 2365
- 19e Kim D, Park W, Jun C. Chem. Rev. 2017; 117: 8977
- 19f Allena AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
- 20 Wang M, Chen J, Chen Z, Zhong C, Lu P. Angew. Chem. Int. Ed. 2018; 57: 2707
- 21 Chang S, Holmes M, Mowat J, Meanwell M, Britton R. Angew. Chem. Int. Ed. 2017; 56: 748
- 22a Shen H, Zhang L, Chen S, Feng J, Zhang B, Zhang Y, Zhang X, Wu Y, Gong L. ACS Catal. 2019; 9. 791
- 22b Wei C, Ye X, Xing Q, Hu Y, Xie Y, Shi X. Org. Biomol. Chem. 2019; 17: 6607
- 23a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
- 23b Gurak JA. Jr, Yang KS, Liu Z, Engle KM. J. Am. Chem. Soc. 2016; 138: 5805
- 24 Xia J, Nie Y, Yang G, Liu Y, Gridnev ID, Zhang W. Chin. J. Chem. 2018; 36: 6
- 25a Xiao K, Lin DW, Miura M, Zhu R, Gong W, Wasa M, Yu J. J. Am. Chem. Soc. 2014; 136: 8138
- 25b He J, Shao Q, Wu Q, Yu J. J. Am. Chem. Soc. 2017; 139: 3344
- 25c Chen X, Chen L, Zhao H, Gao Q, Shen Z, Xu S. Chin. J. Chem. 2020; 38: 1533
- 25d Wu Q, Wang X, Shen P, Yu J. ACS Catal. 2018; 8: 2577
- 26 Misale A, Niyomchon S, Maulide N. Acc. Chem. Res. 2016; 49: 2444
- 27 Guisán-Ceino M, Parr A, Martín-Hera V, Tortos M. Angew. Chem. Int. Ed. 2016; 55: 6969
- 28 Feng S, Hao H, Liu P, Buchwald SL. ACS Catal. 2020; 10: 282
- 29 Chen Y, Hu T, Feng C, Lin G. Chem. Commun. 2015; 51: 8773
- 30 Zhong C, Huang Y, Zhang H, Zhou Q, Liu Y, Lu P. Angew. Chem. Int. Ed. 2020; 59: 2750
- 31a Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
- 31b Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
- 32a Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
- 32b Jerphagnon T, Pizzuti MG, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2009; 38: 1039
- 33 Clement HA, Boghi M, McDonald RM, Bernier L, Coe JW, Farrell W, Helal CJ, Reese MR, Sach NW, Lee JC, Hall DG. Angew. Chem. Int. Ed. 2019; 58: 18405