Synthesis 2021; 53(14): 2477-2484
DOI: 10.1055/a-1396-8607
paper

On Pyridopyrazinol Chemistry: Synthesis of Chemiluminescent Substances

a   Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
b   Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
c   Université de Paris, 12 rue de l’école de Médecine, 75006 Paris, France
,
d   Synchrotron Soleil, L’Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette, France
,
Amira Tadros
a   Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
b   Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
,
Fatima Ezzahra Hibti
e   HORIBA FRANCE SAS, 14 Boulevard Thomas Gobert, Passage Jobin Yvon CS45002, 91120 Palaiseau, France
,
Alessia Quatela
e   HORIBA FRANCE SAS, 14 Boulevard Thomas Gobert, Passage Jobin Yvon CS45002, 91120 Palaiseau, France
,
Yves L. Janin
a   Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
b   Unité Mixte de Recherche 3523, Centre National de la Recherche Scientifique, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
› Author Affiliations
G.G. acknowledges a Ph.D. fellowship from the Université Paris Descartes, Sorbonne Paris Cité. This project also benefited from the Valoexpress funding calls of the Institut Pasteur.


Abstract

Our work on new chemiluminescent substances related to the marine luciferin coelenterazine (λmax = 465 nm) led us to attempt the synthesis of four nitrogen-rich pyridopyrazine-bearing analogues. Accordingly, the preparation of the corresponding benzyl-bearing pyridopyrazinols is studied. By varying the conditions for the condensation of phenylpyruvic acid with 1,2-diaminopyridine or 3,4-diaminopyridine, all the possible pyridopyrazin-2-ol regioisomers are isolated and properly characterized, including by means of crystallographic studies. The ensuing syntheses of the halogenated pyridopyrazines are fraught with difficulties ranging from extensive decomposition to an unexpected ring contraction. In one instance, the inherently reductive mixture of phosphorus oxychloride and phosphorus trichloride provides 2-benzyl-3-chloropyrido[2,3-b]pyrazine. This precursor is then transformed into the target O-acetylated luciferin (6,8-dibenzylimidazo[1,2-a]pyrido[3,2-e]pyrazin-9-yl acetate). The ‘benzo’ derivative of this analogue (i.e., 2,12-dibenzylimidazo[1′,2′:1,6]pyrazino[2,3-c]isoquinolin-3-yl acetate) is also prepared and the chemiluminescence emission spectra of these compounds are determined in a phosphate buffer (λmax = 546 and 462 nm).

Supporting Information



Publication History

Received: 21 January 2021

Accepted after revision: 22 February 2021

Accepted Manuscript online:
22 February 2021

Article published online:
09 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gagnot G, Hervin V, Coutant EP, Goyard S, Jacob Y, Rose T, Hibti FE, Quatela A, Janin YL. Chem. Eur. J. 2021; 27: 2112
    • 2a Inouye S, Shimomura O. Biochem. Biophys. Res. Commun. 1997; 233: 349
    • 2b Giuliani G, Cappelli A, Vomero S, Anzini M. WO2011007314, 2011 .
    • 2c Giuliani G, Molinari P, Ferretti G, Cappelli A, Anzini M, Vomero S, Costa T. Tetrahedron Lett. 2012; 53: 5114
    • 2d Yuan M.-L, Jiang T.-Y, Du L.-P, Li M.-Y. Chin. Chem. Lett. 2016; 27: 550
    • 2e Yeh HW, Karmach O, Ji A, Carter D, Martins-Green MM, Ai HW. Nat. Methods 2017; 14: 971
    • 2f Giuliani G, Merolla A, Paolino M, Reale A, Saletti M, Blancafort L, Cappelli A, Benfenati F, Cesca F. Photochem. Photobiol. 2021; 97 in press; DOI: 10.1111/php.13347.
  • 3 Yao Z, Zhang BS, Steinhardt RC, Mills JH, Prescher JA. J. Am. Chem. Soc. 2020; 142: 14080
    • 4a Coutant EP, Goyard S, Hervin VO, Gagnot G, Baatallah R, Rose T, Jacob Y, Janin YL. Org. Biomol. Chem. 2019; 17: 3709
    • 4b Coutant EP, Gagnot G, Hervin VO, Baatallah R, Goyard S, Jacob Y, Rose T, Janin YL. Chem. Eur. J. 2020; 26: 948
    • 5a Abasolo MI, Bianchi D, Atlasovitch F, Gaozza C, Fernandez BM. J. Heterocycl. Chem. 1990; 27: 157
    • 5b Bekerman DG, Abasolo MI, Fernandez BM. J. Heterocycl. Chem. 1992; 29: 129
  • 6 Janin YL, Huel C, Flad G, Thirot S. Eur. J. Org. Chem. 2002; 1763
  • 7 Rombouts FJ. R, Tresadern G, Buijnsters P, Langlois X, Tovar F, Steinbrecher TB, Vanhoof G, Somers M, Andrés J.-I, Trabanco AA. ACS Med. Chem. Lett. 2015; 6: 282
  • 8 Kato T, Sakamoto T, Kubo A, Sawamoto D. EP2896613, 2016
  • 9 Tanimori S, Kashiwagi H, Nishimura T, Kirihata M. Adv. Synth. Catal. 2010; 352: 2531
  • 10 Scarry SM, Lovell KM, Frankowski KJ, Bohn LM, Aubé J. J. Org. Chem. 2016; 81: 10538
    • 11a An Z, She Y, Yang X, Pang X, Yan R. Org. Chem. Front. 2016; 3: 1746
    • 11b Rajasekar S, Adarsh TP, Tharmalingam N, Andivelu I, Mylonakis E. ChemistrySelect 2019; 4: 2281
    • 11c Chu L, Yue X, Qing FL. Org. Lett. 2010; 12: 1644
    • 11d Deguchi Y, Kono M, Koizumi Y, Izato Y, Miyake A. Org. Process Res. Dev. 2020; 24: 1614
  • 12 Han C, Kelly SM, Cravillion T, Savage SJ, Nguyen T, Gosselin F. Tetrahedron 2019; 75: 4351
    • 13a Mamedov VA. RSC Adv. 2016; 6: 42132
    • 13b Mamedov VA, Zhukova NA, Kadyrova MS, Syakaev VV, Beschastnova TN, Buzyurova DN, Rizvanov IK, Latypov SK, Sinyashin OG. J. Org. Chem. 2019; 84: 13572
  • 14 Vacher M, Fdez Galván I, Ding BW, Schramm S, Berraud-Pache R, Naumov P, Ferré N, Liu YJ, Navizet I, Roca-Sanjuán D, Baader WJ, Lindh R. Chem. Rev. 2018; 118: 6927
  • 15 Wang SL, Ding J, Jiang B, Gao Y, Tu SJ. ACS Comb. Sci. 2011; 13: 572